精英家教网 > 高中数学 > 题目详情
19.△ABC中,B=60°,最大边与最小边的比为$\frac{{\sqrt{3}+1}}{2}$,则△ABC的最大角为(  )
A.60°B.75°C.90°D.105°

分析 设a为最大边.,根据题意求得$\frac{sinA}{sinC}$的值,进而利用正弦的两角和公式展开后,化简整理求得tnaA的值,进而求得A.

解答 解:不妨设a为最大边.由题意,$\frac{a}{c}=\frac{sinA}{sinC}=\frac{\sqrt{3}+1}{2}$,
即$\frac{sinA}{sin(120°-A)}$=$\frac{\sqrt{3}+1}{2}$,
∴$\frac{sinA}{\frac{\sqrt{3}}{2}cosA+\frac{1}{2}sinA}$=$\frac{\sqrt{3}+1}{2}$,
∴整理可得:(3-$\sqrt{3}$)sinA=(3+$\sqrt{3}$)cosA,
∴tanA=2+$\sqrt{3}$,
∴A=75°.
故选:B.

点评 本题主要考查了正弦定理的应用.解题的关键是利用正弦定理把题设中关于边的问题转化为角的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知a∈{-2,0,1,3,4},b∈{1,2},则函数f(x)=xlna+b为增函数的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,则输出的结果是(  )
A.$\frac{19}{20}$B.$\frac{20}{21}$C.$\frac{21}{22}$D.$\frac{22}{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知sin2θ+sinθ=0,θ∈($\frac{π}{2}$,π),则tan2θ=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=$\left\{\begin{array}{l}{2x,x≥0}\\{-{x}^{2},x<0}\\{\;}\end{array}\right.$的反函数是(  )
A.y=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{\sqrt{-x},x<0}\\{\;}\end{array}\right.$B.y=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{-\sqrt{-x},x<0}\\{\;}\end{array}\right.$
C.y=$\left\{\begin{array}{l}{2x,x≥0}\\{\sqrt{-x},x<0}\end{array}\right.$D.y=$\left\{\begin{array}{l}{2x,x≥0}\\{-\sqrt{-x},x<0}\\{\;}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设袋中有4个白球,2个红球,若无放回地抽取3次,每次抽取一球,求:
(1)第一次是白球的情况下,第二次与第三次均是白球的概率.
(2)第一次和第二次均取白球的情况下,第三次是白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.方程sin2x=cosx,x∈(0,π)的实根的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2-1≤0},B={x|lnx<0},则A∪B=(  )
A.{x|x≤1}B.{x|0<x<1}C.{x|-1≤x≤1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.$\overrightarrow{a}$=(3,-2),$\overrightarrow{b}$=(4,-1),$\overrightarrow{c}$=(5,2),计算|$\overrightarrow{a}$-$\overrightarrow{b}$|,|$\overrightarrow{b}$+$\overrightarrow{c}$|和$\overrightarrow{a}$•$\overrightarrow{b}$.

查看答案和解析>>

同步练习册答案