分析 (Ⅰ)求出抛物线的方程,联立直线与抛物线方程,证明x1x2+y1y2=0,即可证明OA⊥OB;
(Ⅱ)连接AB,设直线AB与x轴交于N,由题意,△OAB的面积S=$\frac{1}{2}$|ON||y1-y2|=$\frac{1}{2}•1•\sqrt{(-\frac{1}{k})^{2}+4}$=$\sqrt{5}$,即可求k的值.
解答
(Ⅰ)证明:∵抛物线方程为y2=-2px,其准线方程为x=$\frac{1}{4}$,
∴$\frac{p}{2}$=$\frac{1}{4}$,解得p=$\frac{1}{2}$,
∴抛物线方程为y2=-x.
联立直线l:y=k(x+1),消去x得,ky2+y-k=0,
设A(x1,y1),B(x2,y2),
得y1+y2=-$\frac{1}{k}$,y1y2=-1.
∴x1x2=(y1y2)2=1
∴x1x2+y1y2=0,
∴OA⊥OB;
(Ⅱ)连接AB,设直线AB与x轴交于N,由题意,k≠0
令y=0则x=-1,即N(-1,0),
∴△OAB的面积S=$\frac{1}{2}$|ON||y1-y2|=$\frac{1}{2}•1•\sqrt{(-\frac{1}{k})^{2}+4}$=$\sqrt{5}$,
∴k=-±$\frac{1}{4}$.
点评 本题考查抛物线解析式的求法,考查两线段垂直的证明,考查三角形面积的计算,是中档题,解题时要注意椭圆弦长公式的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-1 | B. | y=1 | C. | y=-2 | D. | y=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{7}{16}$,$\frac{1}{2}$] | B. | [$\frac{7}{16}$,1] | C. | [$\frac{1}{2}$,1] | D. | [0,1] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com