精英家教网 > 高中数学 > 题目详情
14.已知抛物线方程为y2=-2px,其准线方程为x=$\frac{1}{4}$,直线l:y=k(x+1)与抛物线相交于A,B两个不同的点,O为坐标原点.
(Ⅰ)求证:OA⊥OB;
(Ⅱ)当△OAB的面积等于$\sqrt{5}$时,求k的值.

分析 (Ⅰ)求出抛物线的方程,联立直线与抛物线方程,证明x1x2+y1y2=0,即可证明OA⊥OB;
(Ⅱ)连接AB,设直线AB与x轴交于N,由题意,△OAB的面积S=$\frac{1}{2}$|ON||y1-y2|=$\frac{1}{2}•1•\sqrt{(-\frac{1}{k})^{2}+4}$=$\sqrt{5}$,即可求k的值.

解答 (Ⅰ)证明:∵抛物线方程为y2=-2px,其准线方程为x=$\frac{1}{4}$,
∴$\frac{p}{2}$=$\frac{1}{4}$,解得p=$\frac{1}{2}$,
∴抛物线方程为y2=-x.
联立直线l:y=k(x+1),消去x得,ky2+y-k=0,
设A(x1,y1),B(x2,y2),
得y1+y2=-$\frac{1}{k}$,y1y2=-1.
∴x1x2=(y1y22=1
∴x1x2+y1y2=0,
∴OA⊥OB;
(Ⅱ)连接AB,设直线AB与x轴交于N,由题意,k≠0
令y=0则x=-1,即N(-1,0),
∴△OAB的面积S=$\frac{1}{2}$|ON||y1-y2|=$\frac{1}{2}•1•\sqrt{(-\frac{1}{k})^{2}+4}$=$\sqrt{5}$,
∴k=-±$\frac{1}{4}$.

点评 本题考查抛物线解析式的求法,考查两线段垂直的证明,考查三角形面积的计算,是中档题,解题时要注意椭圆弦长公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x-a,x>1}\\{2(x-a)(x-2a),x≤1}\end{array}\right.$若函数f(x)恰有三个零点,则实数a的取值范围是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=loga(x2-2x+5)(a>0),若f(2)=$\frac{1}{lo{g}_{5}2}$,g(x)=2x-k.
(Ⅰ)求实数a的值;
(Ⅱ)当x∈[1,3]时,记f(x),g(x)的值域分别为集合A,B,若A∩B=A,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知△ABC内角A,B,C的对边分别是a,b,c,以下说法:
①在△ABC中,“a,b,c成等差数列”是“acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$=$\frac{3}{2}$b”的充要条件;
②命题“在锐角三角形ABC中,sinA>cosB”的逆命题和逆否命题均为真命题;
③命题“对任意三角形ABC,sinA+sinB>sinC”为假命题.
正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知抛物线x2=2py(p>0),斜率为1的直线交抛物线于A,B两点,若线段AB中点的横坐标为2,则该抛物线的准线方程为(  )
A.y=-1B.y=1C.y=-2D.y=2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若曲线y=$\sqrt{4x-{x}^{2}}$与直线y=$\frac{3}{4}$x+b有公共点,则b的取值范围是-3≤b≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等比数列{an}的公比q>1,a1=2,且a1,a2,a3-8成等差数列,数列{anbn}的前n项和为$\frac{(2n-1)•3^n+1}{2}$.
(1)分别求出数列{an}和{bn}的通项公式;
(2)设数列{$\frac{1}{a_n}$}的前n项和为Sn,已知?n∈N*,Sn≤m恒成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知α=-$\frac{55π}{6}$,则α所在的象限的是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等腰直角三角形ABC中,AB=AC=1,点E为斜边BC的中点,点M在线段AB上运动,则($\overline{AE}$-$\overline{AM}$)•($\overline{AC}$-$\overline{AM}$)的取值范围是(  )
A.[$\frac{7}{16}$,$\frac{1}{2}$]B.[$\frac{7}{16}$,1]C.[$\frac{1}{2}$,1]D.[0,1]

查看答案和解析>>

同步练习册答案