精英家教网 > 高中数学 > 题目详情
5.已知椭圆E的中心为坐标原点,离心率为$\frac{1}{2}$,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=(  )
A.3B.6C.9D.12

分析 利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B坐标,即可求解所求结果.

解答 解:椭圆E的中心在坐标原点,离心率为$\frac{1}{2}$,E的右焦点(c,0)与抛物线C:y2=8x的焦点(2,0)重合,
可得c=2,a=4,b2=12,椭圆的标准方程为:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$,
抛物线的准线方程为:x=-2,
代入椭圆方程,解得y=±3,所以A(-2,3),B(-2,-3).
∴|AB|=6.
故选:B.

点评 本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=(x2-4)(x-a),a为实数,f′(1)=0,则f(x)在[-2,2]上的最大值是(  )
A.$\frac{9}{2}$B.1C.$\frac{3}{5}$D.$\frac{50}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知{an}是递增的等比数列,若a2=3,a4-a3=18,则a5的值为81;{an}的前5项的和S5的值为121.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|2x-1|.
(1)求不等式f(x)<4的解集;
(2)若函数g(x)=f(x)+f(x-1)的最小值为a,且m+n=a(m>0,n>0),求$\frac{2}{m}+\frac{1}{n}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.一个几何体的三视图如图所示(单位:cm),则该几何体的表面积为64+32$\sqrt{2}$cm2,体积为$\frac{160}{3}$cm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x},x≥0}\\{lo{g}_{3}(-x),x<0}\end{array}\right.$,函数g(x)=f2(x)+f(x)+t(t∈R).关于函数g(x)的零点,下列判断不正确的是(  )
A.若t<-2,g(x)有四个零点B.若t=-2,g(x)有三个零点
C.若-2<t<$\frac{1}{4}$,g(x)有两个零点D.若t=$\frac{1}{4}$,g(x)有一个零点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在等比数列{an}中,已知a1+a2=10,a9+a10=90,则 a5+a6=30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|0<x-m<3},B={x|x≤0或x≥3},
(1)当m=1时,求A∩B
(2)当A∪B=B时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在等比数列{an}中,${a}_{2}{a}_{3}{a}_{4}=\frac{27}{64}$,公比q=2,数列{bn}是等差数列,且b7=a5,则b3+b11=6.

查看答案和解析>>

同步练习册答案