精英家教网 > 高中数学 > 题目详情
已知椭圆C:+=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,则C的离心率为(  )
A.B.C.D.
B
|AF|2=|AB|2+|BF|2-2|AB|·|BF|cos∠ABF=100+64-2×10×8×=36,

则|AF|=6,∠AFB=90°,
半焦距c=|FO|=|AB|
=5,
设椭圆右焦点F2,
连结AF2,
由对称性知|AF2|=|FB|=8,
2a=|AF2|+|AF|=6+8=14,
即a=7,
则e==.故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上且过点,离心率是
(1)求椭圆的标准方程;
(2)直线过点且与椭圆交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1:+=1(a>b>0)的右顶点为A(1,0),过C1的焦点且垂直长轴的弦长为1.

(1)求椭圆C1的方程;
(2)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点F1、F2分别是椭圆x2+2y2=2的左、右焦点,点P是该椭圆上的一个动点,则的最小值是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆Γ:  +=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c.若直线y=(x+c)与椭圆Γ的一个交点满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标系中,若方程表示的曲线为椭圆,则的取值范围是( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设直线l:2x+y-2=0与椭圆x2+=1的交点为A,B,点P是椭圆上的动点,则使得△PAB的面积为的点P的个数为   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆与双曲线x2-y2=0有相同的焦点,且离心率为.
(1)求椭圆的标准方程;
(2)过点P(0,1)的直线与该椭圆交于A,B两点,O为坐标原点,若=2,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程=1表示椭圆,则k的取值范围是________.

查看答案和解析>>

同步练习册答案