精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=ex+b在(1,f(1))处的切线为y=ax.
(1)求f(x)的解析式.
(2)若对任意x∈R,有f(x)≥kx成立,求实数k的取值范围.
(3)证明:对任意t∈(-∞,2],f(x)>t+lnx成立.

分析 (1)求出切线方程,得到b的值,从而求出f(x)的解析式即可;
(2)通过讨论k的范围,结合函数的单调性求出k的具体范围即可;
(3)法一:构造函数h(x)=ex-lnx-t(x>0)(t≤2),根据函数的单调性证明即可;
法二:问题转化为证ex>2+lnx,令$h(x)={e^x}-lnx-2,h{^′}(x)={e^x}-\frac{1}{x}=\frac{{x{e^x}-1}}{x}(x>0)$,根据函数的单调性证明即可.

解答 解:(1)由f′(x)=ex得k=f′(1)=e=a,所以切线为y=ex,…(2分)
由切点为(1,e+b)在切线y=ex上,b=0,所以f(x)=ex…(4分)
(2)当k<0时,对于x∈R,ex≥kx显然不恒成立…(5分)
当k=0时,ex≥kx显然成立…(6分)
当k>0时,若要ex-kx≥0恒成立,必有(ex-kx)min≥0
设t(x)=ex-kx,则t′(x)=ex-k
易知t(x)在(-∞,lnk)上单调递减,在(lnk,+∞)上单调递增,
则t(x)min=k(1-lnk)
若ex-kx≥0恒成立,即t(x)min=k(1-lnk)≥0,得0<k≤e
综上得0≤k≤e…(8分)
(3)证法1:由(1)知ex≥ex成立,构造函数h(x)=ex-lnx-t(x>0)(t≤2),
$h{^′}(x)=e-\frac{1}{x}=\frac{ex-1}{x}$所以$h{(x)_{min}}=h(\frac{1}{e})=1-ln\frac{1}{e}-t=2-t≥0$(t≤2)
有ex≥lnx+t成立(当$x=\frac{1}{e},t=2$时取等号).由(1)知ex≥ex成立(当x=1时取等号),
所以有ex>t+lnx成立,即对任意t∈(-∞,2],f(x)>t+lnx成立…(12分)
证法2,因为t≤2,所以要证ex>t+lnx,只须证ex>2+lnx
令$h(x)={e^x}-lnx-2,h{^′}(x)={e^x}-\frac{1}{x}=\frac{{x{e^x}-1}}{x}(x>0)$,
令t(x)=xex-1,t′(x)=ex+xex>0,所以t(x)在(0,+∞)递增,
t(x)>t(0)=-1,
由于t(0)=-1<0,t(1)=e-1>0
所以存在x0∈(0,1),有$t({x_0})={x_0}{e^{x_0}}-1=0$,
则${e^{x_0}}=\frac{1}{x_0}$,x0=-lnx0
即h′(x)>0得$x>{x_0};h{^′}(x)<0$得0<x<x0
所以$h(x)≥h({x_0})={e^{x_0}}-ln{x_0}-2=\frac{1}{x_0}+{x_0}-2>2-2=0$
所以ex-2-lnx>0成立,即ex>t+lnx成立
即对任意t∈(-∞,2],f(x)>t+lnx成立…(12分)

点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.抛物线C1:x2=2py(p>0)的焦点与双曲线C2:$\frac{{x}^{2}}{3}{-y}^{2}=1$的右焦点的连线在第一象限内与C1交于点M,若C1在点M处的切线平行于C2的一条渐近线,则p=(  )
A.$\frac{\sqrt{3}}{16}$B.$\frac{\sqrt{3}}{8}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设数列{an}满足a1=1,an+1=3an,n∈N+
(Ⅰ)求{an}的通项公式及前n项和Sn
(Ⅱ)已知{bn}是等差数列,且满足b1=a2,b3=a1+a2+a3,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点P(x,y)是圆x2+y2=4上任意一点,则z=2x+y的最大值为(  )
A.$\sqrt{5}$B.$2\sqrt{5}$C.6D.$4\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在各项均为正数的等比数列{an}中,若log2(a2•a3•a5•a7•a8)=5,则a1•a9=(  )
A.4B.5C.2D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设复数z1,z2在复平面内的对应点关于虚轴对称,若z1=1-2i,i是虚数单位,则$\frac{{z}_{2}}{{z}_{1}}$的虚部为(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在△ABC中,$cos\frac{1}{2}∠ABC=\frac{{\sqrt{6}}}{3},AB=2$,点D在线段AC上,且AD=2DC,BD=$\frac{4\sqrt{3}}{3}$,则cosC=$\frac{7}{9}$.则三角形ABC的面积为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.堑堵,我国古代数学名词,其三视图如图所示.《九章算术》中有如下问题:“今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?”意思是说:“今有堑堵,底面宽为2丈,长为18丈6尺,高为2丈5尺,问它的体积是多少?”(注:一丈=十尺).答案是(  )
A.25500立方尺B.34300立方尺C.46500立方尺D.48100立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的(  )
A.充分条件B.必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案