精英家教网 > 高中数学 > 题目详情
4.等差数列{an}中,前n项和为Sn,若Sk=25,S2k=100.则S3k=(  )
A.125B.200C.225D.250

分析 利用等差数列的性质Sk,S2k-Sk,S3k-S2k成等差数列,求出S3k的值.

解答 解:等差数列{an}中,前n项和为Sn
Sk,S2k-Sk,S3k-S2k成等差数列,且Sk=25,S2k=100,
∴25,100-25,S3k-100成等差数列,
∴(S3k-100)+25=2×75,
解得S3k=225.
故选:C.

点评 本题考查了等差数列前n项和公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知{an}满足下列条件,写出前5项,数列的一个通项公式.
(1)a1=2,an+1=3an+2;
(2)a1=2,an+1=3an+3
(3)a1=1,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$;
(4)a1=2,an+1=3an2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D,使得$\frac{f({x}_{1})+f({x}_{2})\;}{2}$=C,则称函数f(x)在D上的均值为c.已知f(x)=lnx,x∈[1,e2],则函数f(x)=lnx在x∈[1,e2]上的均值为(  )
A.$\frac{1}{2}$B.1C.eD.$\frac{1+{e}^{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.判断下列各题中的向量$\overrightarrow{a}$,$\overrightarrow{b}$是否共线:
(1)$\overrightarrow{a}$=4$\overrightarrow{{e}_{1}}$-$\frac{2}{5}$$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$一$\frac{1}{10}$$\overrightarrow{{e}_{2}}$;
(2)$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,且$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={0,1},B={2,2a},其中a∈R,定义运算A×B={x|x=x1+x2,x1∈A,x2∈B},若集合A×B中的最大元素为2a+1,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设Sn是等差数列{an}的前n项和,若$\frac{S{\;}_{7}}{S{\;}_{14}}$=$\frac{2}{5}$,则$\frac{S{\;}_{14}}{S{\;}_{21}}$=(  )
A.$\frac{5}{9}$B.$\frac{4}{9}$C.$\frac{1}{3}$D.$\frac{2}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某林场的森林蓄积量每年比上一年增长10%,问经过10年可以长到原来的多少倍?(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=ax3-6x2+b(a≠0),在[1,2]上单调递增,且最大值为1.
(1)求实数a和b的取值范围;
(2)当a取最小值时,试判断方程f(x)=24x的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线y=kx+1与曲线y=ax3+lnx+b相切于点(1,5),则a-b=(  )
A.-3B.2C.3D.-2

查看答案和解析>>

同步练习册答案