精英家教网 > 高中数学 > 题目详情
9.设Sn是等差数列{an}的前n项和,若$\frac{S{\;}_{7}}{S{\;}_{14}}$=$\frac{2}{5}$,则$\frac{S{\;}_{14}}{S{\;}_{21}}$=(  )
A.$\frac{5}{9}$B.$\frac{4}{9}$C.$\frac{1}{3}$D.$\frac{2}{9}$

分析 根据等差数列{an}的前n项和公式,设出首项与公差,表示出$\frac{S{\;}_{7}}{S{\;}_{14}}$,即可得出$\frac{S{\;}_{14}}{S{\;}_{21}}$的值.

解答 解:等差数列{an}中,设首项为a1,公差为d,则a1≠0,d≠0;
∵$\frac{S{\;}_{7}}{S{\;}_{14}}$=$\frac{2}{5}$,
∴$\frac{{7a}_{1}+21d}{1{4a}_{1}+91d}$=$\frac{{a}_{1}+3d}{{2a}_{1}+13d}$=$\frac{2}{5}$,
∴a1=11d;
∴$\frac{S{\;}_{14}}{S{\;}_{21}}$=$\frac{1{4a}_{1}+91d}{2{1a}_{1}+210d}$=$\frac{{2a}_{1}+13d}{{3a}_{1}+30d}$=$\frac{22d+13d}{33d+30d}$=$\frac{5}{9}$.
故选:A.

点评 本题考查了等差数列的前n项和公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知:如图,二次函数的图象与x轴交于A(-2,0),B(4,0)两点.且函数的最大值为9,求二次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知正数x、y使得$\sqrt{2xy}$为x-y与x+y的比例中项,则$\frac{x+y}{x-y}$的值是(  )
A.-1-$\sqrt{2}$B.-1+$\sqrt{2}$C.1-$\sqrt{2}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.分析斜率公式k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$(x1≠x2)的特征,完成下面题目:已知A(2,4).B(3,3),点P(α,b)是线段AB(包括端点)上的动点.试求$\frac{b-1}{a-1}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}中,前n项和为Sn,若Sk=25,S2k=100.则S3k=(  )
A.125B.200C.225D.250

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如果正整数m可以表示为x2-4y2(x,y∈Z),那么称m为“好数”,问1,2,3,…,2014中“好数”的个数为881.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列{an},{bn}中,a1=1,b1=2,且对于任意的正整数m,n满足am+n=2aman,bm+n=bm+bn
(1)求数列{an},{bn}的通项公式;
(2)设cn=an•bn,求数列{cn}的前n项和Sn
(3)设dn=$\frac{1}{{b}_{n}•{b}_{n+1}}$,Tn是数列{dn}的前n项和,求使得Tn<$\frac{m}{2013}$对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足:点(an,an+1)在直线y=x-3上,且a1=18
(1)求数列{an}的通项公式;
(2)设{an}的前n项和为Sn,求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四面体ABCD中,AC=BD,E,F分别为AD,BC的中点,且EF=$\frac{\sqrt{2}}{2}$AC,∠BDC=90°,求证:BD⊥平面ACD.

查看答案和解析>>

同步练习册答案