精英家教网 > 高中数学 > 题目详情
17.分析斜率公式k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$(x1≠x2)的特征,完成下面题目:已知A(2,4).B(3,3),点P(α,b)是线段AB(包括端点)上的动点.试求$\frac{b-1}{a-1}$的取值范围.

分析 由题意画出图形,求出MB、MA所在直线的斜率得答案.

解答 解:如图,

∵A(2,4).B(3,3),点P(α,b)是线段AB(包括端点)上的动点,
∴${k}_{MB}=1,{k}_{MA}=\frac{4-1}{2-1}=3$.
∴$\frac{b-1}{a-1}$的取值范围是[1,3].

点评 本题考查直线斜率的求法,考查了数形结合的解题思想方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设满足方程(2alna-b)2+(c2-mc+3+d)2=0的点(a,b),(c,d)的运动轨迹分别为曲线M,N,若在区间[$\frac{1}{e}$,e]内,曲线M,N有两个交点(其中e=2.71828…是自然对数的底数),则实数m的最大值为(  )
A.4B.4+2ln3C.e+2+$\frac{3}{e}$D.$\frac{1}{e}$+3e-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.作出下列函数的图象:
(1)y=2x+2
(2)y=|lgx|;
(3)y=($\frac{1}{2}$)|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.己知集合p={x∈R|x2-3x+b=0},Q={x∈R|(x+1)(x2+3x-4=0}
(1)若b=4时,存在集合M,使得P?M?Q,求出这样的集合M;
(2)P是否能成为Q的一个子集?若能.求b的取值或取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.判断下列各题中的向量$\overrightarrow{a}$,$\overrightarrow{b}$是否共线:
(1)$\overrightarrow{a}$=4$\overrightarrow{{e}_{1}}$-$\frac{2}{5}$$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$一$\frac{1}{10}$$\overrightarrow{{e}_{2}}$;
(2)$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,且$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$共线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如甲α是β的充分非必要条件,那么$\overline{α}$是$\overline{β}$的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设Sn是等差数列{an}的前n项和,若$\frac{S{\;}_{7}}{S{\;}_{14}}$=$\frac{2}{5}$,则$\frac{S{\;}_{14}}{S{\;}_{21}}$=(  )
A.$\frac{5}{9}$B.$\frac{4}{9}$C.$\frac{1}{3}$D.$\frac{2}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若关于x的方程x3-x2-x+a=0(a∈R)有三个实根x1,x2,x3,且满足x1≤x2≤x3,则a的最小值为-$\frac{5}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{2}$x2+lnx+(1-b)x+a,且f(x)的图象过点(1,$\frac{3}{2}$-b).
(1)若函数f(x)存在单调递减区间,求实数b的取值范围;
(2)设x1,x2(x1<x2)是函数f(x)的两个极值点,若b≥$\frac{7}{2}$,求f(x1)-f(x2)的最小值.

查看答案和解析>>

同步练习册答案