精英家教网 > 高中数学 > 题目详情
设函数f(x)=(1+x)2-2ln(1+x)。
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当0<a<2时,求函数g(x)=f(x)-x2-ax-1在区间[0,3]上的最小值.
解:(Ⅰ)定义域为(-1,+∞),

,则,所以,x<-2或x>0; 
因为定义域为(-1,+∞),所以x>0;
,则,所以
因为定义域为(-1,+∞),所以-1<x<0;
所以,函数的单调递增区间为(0,+∞),单调递减区间为(-1,0)。
(Ⅱ) (x>-1),

因为0<a<2,所以,2-a>0,
,可得
所以函数g(x)在上为减函数,在上为增函数;
①当,即时, 在区间[0,3]上,
g(x)在上为减函数,在上为增函数,
所以,
②当,即时,g(x)在区间(0,3)上为减函数,
所以,
综上所述,当时,; 当时,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
-1,x>0
1,x<0
,则
(a+b)-(a-b)f(a-b)
2
(a≠b)的值是(  )
A、aB、b
C、a,b中较小的数D、a,b中较大的数

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-x
1+x
的反函数为h(x),又函数g(x)与h(x+1)的图象关于有线y=x对称,则g(2)的值为(  )
A、-
4
3
B、-
1
3
C、-1
D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
 
1-x2
,(|x|≤1)
|x|,(|x|>1)
,若方程f(x)=a有且只有一个实根,则实数a满足(  )
A、a<0B、0≤a<1
C、a=1D、a>1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1+x2
1-x2

①求它的定义域;
②求证:f(
1
x
)=-f(x)

③判断它在(1,+∞)单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北一模)设函数f(x)=
1+x1-x
e-ax

(1)写出定义域及f′(x)的解析式,
(2)设a>O,讨论函数y=f(x)的单调性.

查看答案和解析>>

同步练习册答案