精英家教网 > 高中数学 > 题目详情
16.设ω>0,若函数f(x)=2sinωx在[-$\frac{π}{3}$,$\frac{π}{4}$]上单调递增,则ω的取值范围是(  )
A.(0,$\frac{3}{2}$]B.(0,2]C.(0,$\frac{24}{7}$]D.[2,+∞)

分析 由题意利用正弦函数的单调性,可得$\left\{\begin{array}{l}{-\frac{π}{3}•ω≥-\frac{π}{2}}\\{\frac{π}{4}•ω≤\frac{π}{2}}\end{array}\right.$,由此求得ω的取值范围.

解答 解:∵y=2sinωx在[-$\frac{π}{3}$,$\frac{π}{4}$]上单调递增,∴$\left\{\begin{array}{l}{-\frac{π}{3}•ω≥-\frac{π}{2}}\\{\frac{π}{4}•ω≤\frac{π}{2}}\end{array}\right.$,求得0<ω≤$\frac{3}{2}$,
故选:A.

点评 本题主要考查正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=2017x+sin2017x,g(x)=log2017x+2017x,则(  )
A.对于任意正实数x恒有f(x)≥g(x)B.存在实数x0,当x>x0时,恒有f(x)>g(x)
C.对于任意正实数x恒有f(x)≤g(x)D.存在实数x0,当x>x0时,恒有f(x)<g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若将函数y=sinx+$\sqrt{3}$cosx的图象向右平移φ(φ>0)个单位长度得到函数y=sinx-$\sqrt{3}$cosx的图象,则φ的最小值为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点为F1(-c,0)、F2(c,0),P为椭圆上一点,|PF1|=|F1F2|,直线PF1与y轴交于点M,F2M为∠PF2F1的角平分线,求离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知平面直角坐标系内二定点A(-1,0),B(2,0),动点P到B的距离是到定点A的距离的两倍,记动点P的轨迹为曲线E,过点Q(-2,1)的动直线l与曲线E交于点C,D,当|CD|取最小值时,直线l的方程为y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的函数f(x)满足:①对任意x∈R,有f(x+2)=2f(x);②当x∈[-1,1]时,f(x)=$\sqrt{1-{x}^{2}}$.若函数g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$则函数y=f(x)-g(x)在区间(-4,5)上的零点个数是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设圆O1:x2+y2+2x=0与圆O2:x2+y2-4y=0相交于A,B两点,则弦长|AB|=$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+2alnx.
(1)若函数f(x)的图象在(2,f(2))处的切线斜率为l,求实数a的值;
(2)在(1)的条件下,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某企业生产A,B两种产品,生产1吨A种产品需要煤4吨、电18千瓦;生产1吨B种产品需要煤1吨、电15千瓦.现因条件限制,该企业仅有煤10吨,并且供电局只能供电66千瓦,若生产1吨A种产品的利润为10000元;生产1吨B种产品的利润是5000元,试问该企业如何安排生产,才能获得最大利润?

查看答案和解析>>

同步练习册答案