| A. | (0,$\frac{3}{2}$] | B. | (0,2] | C. | (0,$\frac{24}{7}$] | D. | [2,+∞) |
分析 由题意利用正弦函数的单调性,可得$\left\{\begin{array}{l}{-\frac{π}{3}•ω≥-\frac{π}{2}}\\{\frac{π}{4}•ω≤\frac{π}{2}}\end{array}\right.$,由此求得ω的取值范围.
解答 解:∵y=2sinωx在[-$\frac{π}{3}$,$\frac{π}{4}$]上单调递增,∴$\left\{\begin{array}{l}{-\frac{π}{3}•ω≥-\frac{π}{2}}\\{\frac{π}{4}•ω≤\frac{π}{2}}\end{array}\right.$,求得0<ω≤$\frac{3}{2}$,
故选:A.
点评 本题主要考查正弦函数的单调性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 对于任意正实数x恒有f(x)≥g(x) | B. | 存在实数x0,当x>x0时,恒有f(x)>g(x) | ||
| C. | 对于任意正实数x恒有f(x)≤g(x) | D. | 存在实数x0,当x>x0时,恒有f(x)<g(x) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com