精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=2017x+sin2017x,g(x)=log2017x+2017x,则(  )
A.对于任意正实数x恒有f(x)≥g(x)B.存在实数x0,当x>x0时,恒有f(x)>g(x)
C.对于任意正实数x恒有f(x)≤g(x)D.存在实数x0,当x>x0时,恒有f(x)<g(x)

分析 设h(x)=f(x)-g(x)=2017x+sin2017x-log2017x-2017x,x>0,求出h(1)和h(2)的符号,以及h(x)的导数,判断单调性,由零点存在定理即可得到结论.

解答 解:设h(x)=f(x)-g(x)=2017x+sin2017x-log2017x-2017x,x>0,
由h(1)=2017+sin20171-log20171-2017=sin20171>0,
h(2)=2017×2+sin20172-log20172-20172<0,
可得h(1)h(2)<0,
且h′(x)=2017+2017sin2016x•cosx-$\frac{1}{xln2017}$-2017x•ln2017<0,
可得h(x)在(1,2)递减,
可得h(x)在(1,2)有一个零点,设为x0
且当x>x0时,h(x)<h(x0)=0,即f(x)<g(x),
故选:D.

点评 本题考查函数的零点存在定理和函数的单调性的判断和运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.把函数$y=sin(x+\frac{π}{6})$图象上各点的横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变),再将图象向右平移$\frac{π}{3}$个单位,那么所得函数解析式为y=-cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,已知椭圆C1:$\frac{{x}^{2}}{10}$+y2=1,双曲线C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为(  )
A.9B.5C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设a∈R,函数f(x)=|x2-2ax|,方程f(x)=ax+a的四个实数解满足x1<x2<x3<x4
(1)求a的取值范围;
(2)证明:f(x4)>$\frac{76}{3}$+8$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,A1、A2、B1、B2是椭圆的四个顶点,且$\overrightarrow{{A}_{1}{B}_{1}}$•$\overrightarrow{{A}_{2}{B}_{2}}$=3.
(1)求椭圆C的方程;
(2)P是椭圆C上异于顶点的任意点,直线B2P交x轴于点Q,直线A1B2交A2P于点E,设A2P的斜率为k,EQ的斜率为m,问:2m-k能不能为定值?若能为定值,请求出这个定值;若不能为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.△ABC的内角A,B,C所对的边分别为a,b,c,已知三个内角成等差数列,且A为等差中项,若a=3,b=5,则sin B=$\frac{5\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一次考试中,五名学生的数学、物理成绩如下表所示:
学生ABCDE
数学成绩x(分)8991939597
物理成绩y(分)8789899293
(1)根据上表数据在图中作散点图,求y与x的线性回归方程;
(2)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率.
参考公式:回归直线的方程:$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的函数f(x)对任意的实数x1、x2满足f(x1+x2)=f(x1)+f(x2)+2,且f(1)=0,则f(2017)=(  )
A.4032B.2016C.2017D.4034

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设ω>0,若函数f(x)=2sinωx在[-$\frac{π}{3}$,$\frac{π}{4}$]上单调递增,则ω的取值范围是(  )
A.(0,$\frac{3}{2}$]B.(0,2]C.(0,$\frac{24}{7}$]D.[2,+∞)

查看答案和解析>>

同步练习册答案