精英家教网 > 高中数学 > 题目详情
4.已知定义在R上的函数f(x)对任意的实数x1、x2满足f(x1+x2)=f(x1)+f(x2)+2,且f(1)=0,则f(2017)=(  )
A.4032B.2016C.2017D.4034

分析 运用赋值法,分别求出f(2),f(3),f(4),总结规律得到f(n)=2n-2,由此能求出f(2017)的值.

解答 解:f(1)=0,
f(2)=f(1)+f(1)+2=0+0+2=2,
f(3)=f(2)+f(1)+2=2+2=4,
f(4)=f(3)+f(1)+2=4+2=6,

∴f(n)=2n-2.
用数学归纳法证明如下:
(1)当n=1时,f(1)=2×1-2=0,结论成立.
(2)假设n=k时,结论成立,即f(k)=2k-2,
则当n=k+1时,f(k+1)=f(k)+f(1)+2=2k-2+2=2k,
结论也成立,
由(1)、(2)知,f(n)=2n-2.
∴f(2017)=2×2017-2=4032.
故选:A.

点评 本题考查抽象函数的运用,注意运用赋值法,归纳猜想并证明,考查运算能力和推理能力,解题时要认真审题,仔细解答,注意总结规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(x2-x+1)ex,其中e是自然对数的底数.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当x∈[-2,+∞)时,讨论函数f(x)的图象与直线y=m的公共点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=2017x+sin2017x,g(x)=log2017x+2017x,则(  )
A.对于任意正实数x恒有f(x)≥g(x)B.存在实数x0,当x>x0时,恒有f(x)>g(x)
C.对于任意正实数x恒有f(x)≤g(x)D.存在实数x0,当x>x0时,恒有f(x)<g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某同学通过计算机测试的概率为$\frac{1}{3}$,他连续测试3次,且三次测试相互独立,其中恰有1次通过的概率为$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.各项均为正数的等比数列{an},其前n项和为Sn,若a2-a5=-78,S3=13,则数列{an}的通项公式an=(  )
A.2nB.B、2n-1C.3nD.3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知tan(-α-$\frac{4}{3}$π)=-5,则tan($\frac{π}{3}$+α)的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若将函数y=sinx+$\sqrt{3}$cosx的图象向右平移φ(φ>0)个单位长度得到函数y=sinx-$\sqrt{3}$cosx的图象,则φ的最小值为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点为F1(-c,0)、F2(c,0),P为椭圆上一点,|PF1|=|F1F2|,直线PF1与y轴交于点M,F2M为∠PF2F1的角平分线,求离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+2alnx.
(1)若函数f(x)的图象在(2,f(2))处的切线斜率为l,求实数a的值;
(2)在(1)的条件下,求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案