分析 由题意可得|PF1|=|F1F2|=2c,由椭圆的定义可得|PF2|=2a-2c,由内角平分线性质定理可得$\frac{|P{F}_{2}|}{|{F}_{1}{F}_{2}|}$=$\frac{|PM|}{|M{F}_{1}|}$=$\frac{2a-2c}{2c}$=$\frac{a-c}{c}$,可得|MF1|=$\frac{2{c}^{2}}{a}$,分别在△MF1F2中和△PF1F2中,运用余弦定理,可得a,c的关系,再由离心率公式,计算即可得到所求值.
解答
解:由F1(-c,0)、F2(c,0),
P为椭圆上一点,|PF1|=|F1F2|=2c,
由椭圆的定义可得,|PF1|+|PF2|=2a,
即有|PF2|=2a-2c,
F2M为∠PF2F1的角平分线,
可得$\frac{|P{F}_{2}|}{|{F}_{1}{F}_{2}|}$=$\frac{|PM|}{|M{F}_{1}|}$=$\frac{2a-2c}{2c}$=$\frac{a-c}{c}$,
又|PM|+|MF1|=|PF1|=2c,
解得|MF1|=$\frac{2{c}^{2}}{a}$,
由对称性可得|MF2|=$\frac{2{c}^{2}}{a}$,
在△MF1F2中,cos∠MF1F2=$\frac{(\frac{2{c}^{2}}{a})^{2}+(2c)^{2}-(\frac{2{c}^{2}}{a})^{2}}{2•\frac{2{c}^{2}}{a}•2c}$
=$\frac{a}{2c}$,
在△△PF1F2中,cos∠PF1F2=$\frac{(2c)^{2}+(2c)^{2}-(2a-2c)^{2}}{2•2c•2c}$
=$\frac{{c}^{2}-{a}^{2}+2ac}{2{c}^{2}}$,
由于cos∠MF1F2=cos∠PF1F2,
可得c2+ac-a2=0,
由e=$\frac{c}{a}$,可得e2+e-1=0,
解得e=$\frac{-1+\sqrt{5}}{2}$或$\frac{-1-\sqrt{5}}{2}$(舍去).
则椭圆的离心率为$\frac{-1+\sqrt{5}}{2}$.
点评 本题考查椭圆的离心率的求法,注意运用椭圆的定义,以及内角平分线的性质定理,三角形的余弦定理,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4032 | B. | 2016 | C. | 2017 | D. | 4034 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 至多有一次击中目标 | B. | 三次都不击中目标 | ||
| C. | 三次都击中目标 | D. | 只有一次击中目标 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{3}{2}$] | B. | (0,2] | C. | (0,$\frac{24}{7}$] | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com