精英家教网 > 高中数学 > 题目详情
9.已知a∈R,函数f(x)=alnx-(a+1)x+$\frac{1}{2}{x^2}$.
(1)若函数y=f(x)在x=3处取得极值,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若a<0,且函数y=f(x)有两个不同的零点,求a取值范围.

分析 (1)求出函数的导数,根据x=3是函数的极值,求出a的值,求出f(1),f′(1),求出切线方程即可;
(2)求出函数的导数,根据函数的单调性,求出函数的极小值小于0,求出a的范围即可.

解答 解:(1)由题意得,f′(x)=$\frac{a}{x}$-(1+a)+x=$\frac{(x-1)(x-a)}{x}$(x>0),
由f′(x)=0,得x1=1,x2=a,
若函数y=f(x)在x=3处取得极值,则a=3,
故f(x)=3lnx-4x+$\frac{1}{2}$x2,f′(x)=$\frac{3}{x}$-4+x,
故f(1)=-$\frac{7}{2}$,f′(1)=0,
故切线方程是:y+$\frac{7}{2}$=0,
即y=-$\frac{7}{2}$;
(2)由题意得,f′(x)=$\frac{a}{x}$-(1+a)+x=$\frac{(x-1)(x-a)}{x}$(x>0),
由f′(x)=0,得x1=1,x2=a
a<0时,令f′(x)>0,解得:x>1,
令f′(x)<0,解得:0<x<1,
∴f(x)在(0,1)递减,在(1,+∞)递增,
∴f(x)在x=1处取得极小值,
又当x→0时,或x→+∞时,都有g(x)→+∞,
∴f(1)=-a-$\frac{1}{2}$<0,解得-$\frac{1}{2}$<a<0,
综上所述a的取值范围为(-$\frac{1}{2}$,0).

点评 本题考查了切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图:已知抛物线 C1:y2=2px (p>0),直线 l 与抛物线 C 相交于 A、B 两点,且当倾斜角为 60°的直线 l 经过抛物线 C1 的焦点 F 时,有|AB|=$\frac{1}{3}$.
(Ⅰ)求抛物线 C 的方程;
(Ⅱ)已知圆 C2:(x-1)2+y2=$\frac{1}{16}$,是否存在倾斜角不为 90°的直线 l,使得线段 AB 被圆 C2 截成三等分?若存在,求出直线 l 的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知tan(-α-$\frac{4}{3}$π)=-5,则tan($\frac{π}{3}$+α)的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}满足$\frac{1}{{a}_{n}+1}$=$\frac{2}{{a}_{n+1}+1}$,且a2=2,则a7=95.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点为F1(-c,0)、F2(c,0),P为椭圆上一点,|PF1|=|F1F2|,直线PF1与y轴交于点M,F2M为∠PF2F1的角平分线,求离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=Asin(ωx+φ)(A,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,则tanφ=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的函数f(x)满足:①对任意x∈R,有f(x+2)=2f(x);②当x∈[-1,1]时,f(x)=$\sqrt{1-{x}^{2}}$.若函数g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$则函数y=f(x)-g(x)在区间(-4,5)上的零点个数是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=ax2-2ax+2+b(a≠0)在[2,3]上有最大值5和最小值2,则a,b的值为$\left\{\begin{array}{l}{a=1}\\{b=0}\end{array}\right.$或$\left\{\begin{array}{l}{a=-1}\\{b=3}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为“有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少橘子.”这个问题中,得到橘子最多的人所得的橘子个数是18.

查看答案和解析>>

同步练习册答案