精英家教网 > 高中数学 > 题目详情
如图,一水渠的横断面是抛物线形,O是抛物线的顶点,口宽EF=4米,高3米
(1)建立适当的直角坐标系,求抛物线方程.
(2)现将水渠横断面改造成等腰梯形ABCD,要求高度不变,只挖土,不填土,求梯形ABCD的下底AB多大时,所挖的土最少?
(1)如图以O为原点,AB所在的直线为X轴,建立平面直角坐标系,
则F(2,3),设抛物线的方程是x2=2py(p>0)
因为点F在抛物线上,所以4=2p×3,p=
2
3

所以抛物线的方程是x2=
4
3
y
(5分)
(2)等腰梯形ABCD中,ABCD,线段AB的中点O是抛物线的顶点,AD,AB,BC分别与抛物线切于点M,O,N
y'=
3
2
x,设N(x0,y0),x0>0,,
则抛物线在N处的切线方程是y-y0=
3
2
x0(x-x0)
,所以B(
1
2
x0,0)C(
4+x02
2x0
,3)
,(10分)
梯形ABCD的面积是S=
1
2
(x0+
4+x02
2x0
)×3
=
3
2
(2x0+
4
x0
)=3(x0+
2
x0
)
≥6
2
,等号当且仅当x0=
2
时成立,
答:梯形ABCD的下底AB=
2
米时,所挖的土最少(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线的方程为,直线的方程为,点关于直线的对称点在抛物线上.
(1)求抛物线的方程;
(2)已知,点是抛物线的焦点,是抛物线上的动点,求的最小值及此时点的坐标;
(3)设点是抛物线上的动点,点是抛物线与轴正半轴交点,是以为直角顶点的直角三角形.试探究直线是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y=ax2的准线方程是y=1,则a的值为(  )
A.
1
4
B.-
1
4
C.4D.-4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y=2px2(p≠0)的焦点坐标为(  )
A.(0,p)B.(0,
1
4p
C.(0,
1
8p
D.(0,±
1
8p

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线y2=4x,点M(1,0)关于y轴的对称点为N,直线l过点M交抛物线于A,B两点.
(Ⅰ)证明:直线NA,NB的斜率互为相反数;
(Ⅱ)求△ANB面积的最小值;
(Ⅲ)当点M的坐标为(m,0)(m>0,且m≠1).根据(Ⅰ)(Ⅱ)推测并回答下列问题(不必说明理由):
①直线NA,NB的斜率是否互为相反数?
②△ANB面积的最小值是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=2px,点P(-1,0)是其准线与x轴的焦点,过P的直线l与抛物线C交于A、B两点.
(1)当线段AB的中点在直线x=7上时,求直线l的方程;
(2)设F为抛物线C的焦点,当A为线段PB中点时,求△FAB的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个截面为抛物线形的旧河道(如图1),河口宽AB=4米,河深2米,现要将其截面改造为等腰梯形(如图2),要求河道深度不变,而且施工时只能挖土,不准向河道填土.
(1)建立恰当的直角坐标系并求出抛物线弧AB的标准方程;
(2)试求当截面梯形的下底(较长的底边)长为多少米时,才能使挖出的土最少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,等腰梯形ABCD中,线段Ab的中点O是抛物线的顶点,DA、AB、BC分别与抛物线切于点M、O、N.等腰梯形的高是3,直线CD与抛物线相交于E、F两点,线段EF的长是4.
(Ⅰ)建立适当的直角坐标系,求抛物线的方程;
(Ⅱ)求等腰梯形ABCD的面积的最小值,并确定此时M、N的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆的左右焦点为,作轴的垂线与交于两点,轴交于点,若,则椭圆的离心率等于________.

查看答案和解析>>

同步练习册答案