精英家教网 > 高中数学 > 题目详情
7.设f(x)=msin(πx+α)+ncos(πx+β)+8,其中m,n,α,β均为实数,若f(2000)=-2000,则f(2015)=2016.

分析 根据三角函数的诱导公式,列方程即可得到结论.

解答 解:∵f(x)=msin(πx+α)+ncos(πx+β)+8,f(2000)=-2000,
∴f(2000)=msin(2000π+α)+ncos(2000π+β)+8=msinα+ncosβ+8=-2000,
∴可得:msinα+ncosβ=-2008,
则 f(2015)=msin(2015π+α)+ncos(2015π+β)+8=-msinα-ncosβ+8=-(msinα+ncosβ)+8=2016.
故答案为:2016.

点评 本题主要考查函数值的计算,利用三角函数的诱导公式是解决本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若a=20.6,b=log30.6,c=0.62,则(  )
A.b>c>aB.a>b>cC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果$\overrightarrow{a}$,$\overrightarrow{b}$是两个单位向量,则下列结论中正确的是(  )  )
A.$\overrightarrow{a}$=$\overrightarrow{b}$B.$\overrightarrow{a}$•$\overrightarrow{b}$=1C.$\overrightarrow{{a}^{2}}$≠$\overrightarrow{{b}^{2}}$D.|$\overrightarrow{a}$|=|$\overrightarrow{b}$|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在数列{an}中,a1+a2+a3+…+an=n2+2(n∈N*),则an=$\left\{\begin{array}{l}{3,n=1}\\{2n-1,n≥2}\end{array}\right.$,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示的程序框图输出的结果是S=5040,则判断框内应填的条件是(  )
A.i≤7B.i>7C.i≤6D.i>6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.五棱锥P-ABCD的体积为5,三视图如图所示,则侧棱中最长的一条的长度是(  )
A.6B.3$\sqrt{3}$C.3$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=2+2sinα}\end{array}\right.$(α为参数),M是C1上的动点,点P满足$\overrightarrow{OP}$=2$\overrightarrow{OM}$,点P的轨迹为曲线C2
(1)在以O为极点,x轴的正半轴为极轴建立极坐标系,求曲线C2的极坐标方程;
(2)在(1)的极坐标系中,射线θ=$\frac{π}{3}$与C1异于极点的交点为A,与C2异于极点的交点为B,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l:y=k(x-2)与抛物线C:y2=8x交于A,B两点,点M(-2,4)满足$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,则|AB|=(  )
A.6B.8C.10D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=xcosx-sinx+$\frac{1}{4}$x2,当x∈(0,π)时,求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案