精英家教网 > 高中数学 > 题目详情
4.执行如图所示的程序框图,若输出s的值为70,则判断框内可填入的条件是(  )
A.i≤5B.i<5C.i>5D.i≥5

分析 模拟执行程序框图,依次写出每次循环得到的s,i的值,当s=70,i=6时,由题意,此时应该不满足条件,退出循环,输出s的值为70.结合选项可知,判断框内可填入的条件是i≤5.

解答 解:模拟执行程序框图,可得
i=1,s=0
满足条件,s=2,i=2
满足条件,s=8,i=3
满足条件,s=20,i=4
满足条件,s=40,i=5
满足条件,s=70,i=6
由题意,此时应该不满足条件,退出循环,输出s的值为70.
结合选项可知,判断框内可填入的条件是i≤5.
故选:A.

点评 本题主要考查了循环结构的程序框图,当i=6时判定退出循环的条件是解题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足a1=3,an+1-3an=3n(n∈N*),数列{bn}满足bn=$\frac{a_n}{3^n}$.
(Ⅰ)求证:数列{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2+$\frac{2}{x}$+alnx.
(Ⅰ)若f(x)在区间[2,3]上单调递增,求实数a的取值范围;
(Ⅱ)设f(x)的导函数f′(x)的图象为曲线C,曲线C上的不同两点A(x1,y1)、B(x2,y2)所在直线的斜率为k,求证:当a≤4时,|k|>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了解一种植物的生长情况,抽取一批该植物样本测量高度(单位:cm),其频率分布直方图如图所示
(1)求该植物样本高度的平均数$\overrightarrow{x}$和样本方差s2(同一组中的数据用该组区间的中点值作代表)
(2)假设该植物的高度Z服从正态分布N(μ,a2),其中μ近似为平均数$\overrightarrow{x}$,a2近似为样本方差s2,利用该正态分布求P(64.5<Z<96)
附:$\sqrt{110}$≈10.5,若Z~N(μ,a2),则P(μ-?<Z<μ+?)=0.6826,P(μ-2?<Z<μ+2?)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C所对的边长为a,b,c,若a=$\sqrt{2}$,b=2,sinB+cosB=$\sqrt{2}$,则A=(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系内,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.曲线C的极坐标方程是ρ=2cosθ,直线l的参数方程是$\left\{\begin{array}{l}x=-3+\frac{{\sqrt{3}}}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$为参数).若M,N分别为曲线C与直线l上的动点,则|MN|的最小值为(  )
A.$\sqrt{2}$+1B.3$\sqrt{2}$-1C.$\sqrt{2}$-1D.3$\sqrt{2}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知复数z1=2+3i,z2=a-2+i,若|z1-z2|<|z1|,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=|x-a|+1,a∈R
(1)当a=4时,解不等式f(x)<1+|2x+1|
(2)若f(x)≤2的解集为[0,2],$\frac{1}{m}$+$\frac{1}{n}$=a(m>0,n>0)求证:m+2n≥3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知由不等式组$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y-kx≤2}\\{y-x-4≤0}\end{array}\right.$所确定的平面区域Ω的面积为7,点M(x,y)∈Ω,则z=x-2y的最小值是(  )
A.-8B.-7C.-6D.-4

查看答案和解析>>

同步练习册答案