| A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{2π}{3}$ |
分析 先利用辅助角公式求出角B,然后利用正弦定理求出角A即可,注意三角形的内角和为180°.
解答 解:∵sinB+cosB=$\sqrt{2}$,即$\sqrt{2}$($\frac{\sqrt{2}}{2}$sinB+$\frac{\sqrt{2}}{2}$cosB)=$\sqrt{2}$,
∴$\sqrt{2}$sin(B+$\frac{π}{4}$)=$\sqrt{2}$,解得sin(B+$\frac{π}{4}$)=1,
∴结合B的范围可得:B=$\frac{π}{4}$,则sinB=$\frac{\sqrt{2}}{2}$,
根据正弦定理$\frac{\sqrt{2}}{sinA}$=$\frac{2}{\frac{\sqrt{2}}{2}}$,
解得sinA=$\frac{1}{2}$,解得A=$\frac{π}{6}$或$\frac{5π}{6}$(舍去),
故选:B.
点评 本题主要考查了辅助角公式,以及正弦定理的应用,同时考查了运算求解的能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分又不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | O是△AEF的垂心 | B. | O是△AEF的内心 | C. | O是△AEF的外心 | D. | O是△AEF的重心 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com