精英家教网 > 高中数学 > 题目详情
10.若向量$\overrightarrow{a}$与$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$-$\overrightarrow{b}$)$⊥\overrightarrow{a}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角等于$\frac{π}{4}$,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{10}$.

分析 根据条件得出$\overrightarrow{a}$$•\overrightarrow{b}$=2,运用数量积的定义式得出cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$即可求出夹角,
根据向量的模与乘法的转化|$\overrightarrow{a}$+$\overrightarrow{b}$|2=($\overrightarrow{a}$$+\overrightarrow{b}$)2=|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2+2$\overrightarrow{a}•\overrightarrow{b}$,即可求解向量的模.

解答 解:∵|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2,($\overrightarrow{a}$-$\overrightarrow{b}$)$⊥\overrightarrow{a}$,
∴($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=0,
即$\overrightarrow{a}$$•\overrightarrow{b}$=2,
∴cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{2}{\sqrt{2}×2}=\frac{\sqrt{2}}{2}$,
即向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$,
∵|$\overrightarrow{a}$+$\overrightarrow{b}$|2=($\overrightarrow{a}$$+\overrightarrow{b}$)2=|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2+2$\overrightarrow{a}•\overrightarrow{b}$=2+4+4=10
∴|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{10}$,
故答案为:$\frac{π}{4}$;$\sqrt{10}$.

点评 本题综合考查了平面向量的性质,运算,求解夹角,模,属于基本题目,难度不大,计算仔细些,书写规范即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知{an}中,a1=1,其前n项和为Sn,且满足an=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$.
(Ⅰ)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列;
(Ⅱ)证明:S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.定义在R上的函数f(x)满足$f(x)=\frac{f'(1)}{2}•{e^{2x-2}}+{x^2}-2f(0)x$,$g(x)=f(\frac{x}{2})-\frac{1}{4}{x^2}+(1-a)x+a$.
(1)求函数f(x)的解析式;
(2)求函数g(x)的单调区间;
(3)如果s、t、r满足|s-r|≤|t-r|,那么称s比t更靠近r.当a≥2且x≥1时,试比较$\frac{e}{x}$和ex-1+a哪个更靠近lnx,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.为调查学生身高的情况,随机抽测了高三两个班120名学生的身高(单位:cm),所得数据均在区间[140,190]上,其频率分布直方图如图所示(左下),则在抽测的120名学生中,身高位于区间[160,180)上的人数为(  )
A.70B.71C.72D.73

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与抛物线y2=2px(p>0)有相同的焦点,且双曲线的一条渐近线与抛物线的准线交于点$(-5,-\frac{15}{4})$,则双曲线的离心率为(  )
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\frac{4}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2+$\frac{2}{x}$+alnx.
(Ⅰ)若f(x)在区间[2,3]上单调递增,求实数a的取值范围;
(Ⅱ)设f(x)的导函数f′(x)的图象为曲线C,曲线C上的不同两点A(x1,y1)、B(x2,y2)所在直线的斜率为k,求证:当a≤4时,|k|>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=|x-a|+1,a∈R
(1)当a=4时,解不等式f(x)<1+|2x+1|;
(2)若f(x)≤2的解集为[0,2],$\frac{1}{m}$+$\frac{1}{n}$=a(m>0,n>0),求证:m+2n≥3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C所对的边长为a,b,c,若a=$\sqrt{2}$,b=2,sinB+cosB=$\sqrt{2}$,则A=(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知在△ABC中,sin2A=sinBsinC.
(1)若∠A=$\frac{π}{3}$,求∠B的大小;
(2)若bc=1,求△ABC的面积的最大值.

查看答案和解析>>

同步练习册答案