【题目】设函数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)讨论函数的单调性.
【答案】(Ⅰ);(Ⅱ)讨论见解析
【解析】
(Ⅰ)利用导数的几何意义求解即可;
(Ⅱ)分类讨论参数的范围,利用导数证明单调性即可.
解:(Ⅰ)当时,
所以.
所以.
所以曲线在点处的切线方程为.
(Ⅱ)因为,
所以.
(1)当时,因为
由得,
由得,
所以在区间内单调递增,在区间内单调递减.
(2)当时,令,得.
① 当时,
由,得;
由,得或.
所以在区间内单调递增,在区间和内单调递减.
②当时,
由得或;
由得.
所以在区间和内单调递增,在区间内单调递减.
③当时,因为
所以在区间内单调递增.
④当时,由得或;
由得.
所以在区间和内单调递增,在区间内单调递减.
综上可知,当时,在区间内单调递增,在区间内单调递减;
当时,在区间内单调递增,在区间和内单调递减;
当时,在区间和内单调递增,在区间内单调递减;
当时,在区间内单调递增;
当时,在区间和内单调递增,在区间内单调递减.
科目:高中数学 来源: 题型:
【题目】以下四个命题:①命题“若,则”的逆否命题为“若,则”;②“”是“”的充分不必要条件; ③若为假命题,则均为假命题;④对于命题使得,则为,均有.其中,真命题的个数是 ( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了适应新高考改革,某校组织了一次新高考质量测评(总分100分),在成绩统计分析中,抽取12名学生的成绩以茎叶图形式表示如图,学校规定测试成绩低于87分的为“未达标”,分数不低于87分的为“达标”.
(1)求这组数据的众数和平均数;
(2)在这12名学生中从测试成绩介于80~90之间的学生中任选2人,求至少有1人“达标”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为、,是椭圆的上顶点,,且的面积为1.
(1)求椭圆的标准方程;
(2)设、是椭圆上的两个动点,,求当的面积取得最大值时,直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆方程为,过点的直线l交椭圆于点A,B,O是坐标原点,点P满足,点N的坐标为,当l绕点M旋转时,求:
(1)动点P的轨迹方程;
(2)的最小值与最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017高考新课标Ⅲ,理19)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.
(1)求图中x的值;
(2)求这组数据的平均数和中位数;
(3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂有两个车间生产同一种产品,第一车间有工人200人,第二车间有工人400人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,并对他们中每位工人生产完成一件产品的时间(单位:min)分别进行统计,得到下列统计图表(按照[55,65),[65,75),[75,85),[85,95]分组).
分组 | 频数 |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合计 | 20 |
第一车间样本频数分布表
(Ⅰ)分别估计两个车间工人中,生产一件产品时间小于75min的人数;
(Ⅱ)分别估计两车间工人生产时间的平均值,并推测哪个车间工人的生产效率更高?(同一组中的数据以这组数据所在区间中点的值作代表)
(Ⅲ)从第一车间被统计的生产时间小于75min的工人中随机抽取2人,求抽取的2人中,至少1人生产时间小于65min的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com