精英家教网 > 高中数学 > 题目详情
9.如图,在直三棱柱ABC-A1B1 C1中,AC=2$\sqrt{2}$,AB=BC=BB1=2,N是BB1的中点.
(I)求证:BC1⊥平面A1B1C;
(Ⅱ)求三棱锥C-A1B1N的体积.

分析 (Ⅰ)推导出BB1⊥A1B1,A1B1⊥B1C1,从而A1B1⊥平面BB1C1,进而BC1⊥A1B1,再求出BC1⊥B1C,由此能证明BC1⊥平面A1B1C.
(Ⅱ)C到平面A1B1N的距离BC=2,由此能求出三棱锥C-A1B1N的体积.

解答 证明:(Ⅰ)∵在直三棱柱ABC-A1B1 C1中,BB⊥底面A1B1C1,A1B1?底面A1B1C1
∴BB1⊥A1B1
∵AC=2$\sqrt{2}$,AB=BC=BB1=2,
∴AB2+BC2=AC2,∴AB⊥BC,∴A1B1⊥B1C1
∵BB1∩B1C1=B1,∴A1B1⊥平面BB1C1
∵BC1?平面BB1C1,∴BC1⊥A1B1
∵在直三棱柱ABC-A1B1 C1中,AC=2$\sqrt{2}$,AB=BC=BB1=2,
∴四边形BB1C1C是正方形,∴BC1⊥B1C,
∵A1B1∩B1C=B1,∴BC1⊥平面A1B1C.
解:(Ⅱ)由(Ⅰ)知AB⊥BC,BB1⊥BC,
∵AB∩BB1=B,∴BC⊥平面A1B1N,
∴C到平面A1B1N的距离BC=2,
${S}_{△{A}_{1}{B}_{1}N}$=$\frac{1}{2}×{A}_{1}{B}_{1}×N{B}_{1}$=$\frac{1}{2}×2×1$=1,
∴三棱锥C-A1B1N的体积:
V=$\frac{1}{3}×{S}_{△{A}_{1}{B}_{1}N}×BC$=$\frac{1}{3}×1×2=\frac{2}{3}$.

点评 本题考查线面垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x2+$\frac{a}{x}$,则“0<a<2”是“函数f(x)在(1,+∞)上为增函数”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中不正确的是(  )
A.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
B.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
C.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
D.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,角A,B,C对应的边分别为a,b,c,已知a=4,b=5,cos(B-A)=$\frac{31}{32}$,则cosB=$\frac{9}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,|$\overrightarrow{AB}$|=$\frac{1}{t}$,|$\overrightarrow{AC}$|=t,若P点是△ABC所在平面内一点,且$\overrightarrow{AP}$=$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$,当t变化时,$\overrightarrow{PB}$$•\overrightarrow{PC}$的最大值等于(  )
A.-2B.0C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出下列命题:
①若函数y=f(x)满足f(x-1)=f(x+1),则函数f(x)的图象关于直线x=1对称;
②点(2,1)关于直线x-y+1=0的对称点为(0,3);
③通过回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$可以估计和观测变量的取值和变化趋势;
④正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,所以f(x)=sin(x2+1)是奇函数,上述推理错误的原因是大前提不正确.
其中真命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.口袋中有若干红球、黄球和蓝球,从中摸出一只球.摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为0.17.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若1≤log2(x-y+1)≤2,|x-3|≤1,则x-2y的最大值与最小值之和是(  )
A.0B.-2C.2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在三棱锥A-BCD中,△ABD为边长等于$\sqrt{2}$正三角形,CD=CB=1.△ADC与△ABC是有公共斜边AC的全等的直角三角形.
(Ⅰ)求证:AC⊥BD;
(Ⅱ)求D点到平面ABC的距离.

查看答案和解析>>

同步练习册答案