精英家教网 > 高中数学 > 题目详情

已知函数
(1)若函数的定义域和值域均为,求实数的值;
(2)若在区间上是减函数,且对任意的,总有,求实数的取值范围;

(1);(2).

解析试题分析:(1)确定函数的对称轴,从而可得函数的单调性,利用的定义域和值域均是,建立方程,即可求实数的值;(2)由函数的单调性得出单调递减,在单调递增,从而求出上的最大值和最小值的极差,使,进而求出实数的取值范围.
试题解析:(1)上的减函数,
上单调递减
   
                                     4分
(2)在区间上是减函数,            6分
上单调递减,在上单调递增
 

                                 8分
对任意的,总有
,                                      10分
又                     12分
考点:二次函数的最值问题,考查函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,为半圆的圆心,,现要将此铁皮剪出一个等腰三角形,其底边.

(1)设,求三角形铁皮的面积;
(2)求剪下的铁皮三角形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定.大桥上的车距与车速和车长的关系满足:为正的常数),假定车身长为,当车速为时,车距为2.66个车身长.
写出车距关于车速的函数关系式;
应规定怎样的车速,才能使大桥上每小时通过的车辆最多?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求的值;
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求该函数的值域;
(2)若对于恒成立,求有取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)求函数的最小值;
(II)对于函数定义域内的任意实数,若存在常数,使得不等式都成立,则称直线是函数的“分界线”.
设函数,试问函数是否存在“分界线”?若存在,求出“分界线”的方程.若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)计算:;(2)解方程:log3(6x-9)=3.

查看答案和解析>>

同步练习册答案