精英家教网 > 高中数学 > 题目详情
已知椭圆经过点,它的焦距|F1F2|=2,E是椭圆上一点且∠F1EF2=60°,
(1)求该椭圆的标准方程; 
(2)求△F1EF2的面积。
解:(1)由题意得:c=1,, ①  
,  ②
由①、②得
所以所求椭圆的标准方程为
(2)△的面积是。    
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:x2=4y的焦点为F,过点F作直线l交抛物线C于A、B两点;椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率e=
3
2

(1)求椭圆E的方程;
(2)经过A、B两点分别作抛物线C的切线l1、l2,切线l1与l2相交于点M.证明:AB⊥MF;
(3)椭圆E上是否存在一点M′,经过点M′作抛物线C的两条切线M′A′、M′B(A′、B′为切点),使得直线A′B′过点F?若存在,求出抛物线C与切线M′A′、M′B所围成图形的面积;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心是坐标原点O,它的短轴长为2,右焦点为F,右准线l与x轴相交于点E,
FE
=
OF
,过点F的直线与椭圆相交于A,B两点,点C和点D在l上,且AD∥BC∥x轴.
(I)求椭圆的方程及离心率;
(II)当|BC|=
1
3
|AD|
时,求直线AB的方程;
(III)求证:直线AC经过线段EF的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在坐标原点O的椭圆C经过点A(3
2
,4)
,点B(
10
,2
5
)

(1)求椭圆C的方程;
(2)已知圆M:x2+(y-5)2=9,双曲线G与椭圆C有相同的焦点,它的两条渐近线恰好与圆M相切,求双曲线G的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)它的两个焦点为F1(-5
3
,0),F2(5
3
,0),P为椭圆E上一点(点P在第三象限),且△F1 F2的周长等于20+10
3

(Ⅰ)求椭圆E的方程;
(Ⅱ)若以点P为圆心的圆经过椭圆E的左顶点M与点C(-2,0),直线MP交圆P于另一点N,试在椭圆E上找一点A,使得
AM
AN
取得最小值,并求出最小值.

查看答案和解析>>

同步练习册答案