精英家教网 > 高中数学 > 题目详情

【题目】如图所示, 四棱锥底面是直角梯形, 底面, 的中点, .

(Ⅰ)证明: ;

(Ⅱ)证明: ;

(Ⅲ)求三棱锥的体积.

【答案】(1)见解析;(2)见解析;(3).

【解析】试题分析:

(1)由题意可证得,结合线面平行的判断定理即可证得;

(2)利用题意结合线面垂直的判断定理即可证得题中的结论;

(3)转化顶点可得四棱锥的体积为 .

试题解析:

(1)取PD中点Q, 连EQ , AQ ,

(2)证明:

PA⊥平面ABCD,CD平面ABCD

PA⊥CD,

又∵CD⊥AD,PA∩AD=A

∴CD⊥平面PAD

又∵AQ平面PAD

∴AQ⊥CD,

又∵PA=AD,Q为PD的中点

∴AQ⊥PD,

又∵PD∩CD=D

AQ⊥平面PCD,BE∥AQ

BE⊥平面PCD.

(3)

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+1,x∈N*.x0n∈N*,使f(x0)+f(x0+1)+f(x0n)=63成立,则称(x0n)为函数f(x)的一个“生成点”.则函数f(x)的“生成点”共有(  )

A.1B2C.3个 D4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数, 上的奇函数,且.

(1)求的解析式;

(2)若函数上只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求与圆心在直线上,且过点A(2,-3),B(-2,-5)的圆C的方程.

(2)是圆C上的点,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12已知椭圆C: 的离心率为,右焦点为(,0).(1)求椭圆C的方程;(2)若过原点作两条互相垂直的射线,与椭圆交于A,B两点,求证:点O到直线AB的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知函数f(x)(x∈R)是奇函数,且当x>0时,f(x)=2x-1,求函数f(x)的解析式

(2)已知xy12xy9xy,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,底面的中点,为棱的中点.

I)证明:平面

II)已知,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三一次月考之后,为了为解数学学科的学习情况,现从中随机抽出若干名学生此次的数学成绩,按成绩分组,制成了下面频率分布表:

组号

分组

频数

频率

第一组

5

0.05

第二组

35

0.35

第三组

30

0.30

第四组

20

0.20

第五组

10

0.10

合计

100

1.00

(1)试估计该校高三学生本次月考的平均分;

(2)如果把表中的频率近似地看作每个学生在这次考试中取得相应成绩的概率,那么从所有学生中采用逐个抽取的方法任意抽取3名学生的成绩,并记成绩落在中的学生数为

求:在三次抽取过程中至少有两次连续抽中成绩在中的概率;

的分布列和数学期望.(注:本小题结果用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点,椭圆的左,右顶点分别为.过点的直线与椭圆交于两点,且的面积是的面积的3倍.

(Ⅰ)求椭圆的方程;

(Ⅱ)若轴垂直,是椭圆上位于直线两侧的动点,且满足,试问直线的斜率是否为定值,请说明理由.

查看答案和解析>>

同步练习册答案