精英家教网 > 高中数学 > 题目详情

【题目】本小题满分12已知椭圆C: 的离心率为,右焦点为(,0).(1)求椭圆C的方程;(2)若过原点作两条互相垂直的射线,与椭圆交于A,B两点,求证:点O到直线AB的距离为定值.

【答案】(1) ,(2) O到直线 的距离为定值.

【解析】试题分析:(1)根据焦点和离心率列方程解出a,b,c;

(2)对于AB有无斜率进行讨论,设出A,B坐标和直线方程,利用根与系数的关系和距离公式计算;

试题解析:(1)由右焦点为(,0),则 ,又离心率为,所以 ,

(2) 设 , ,若k存在,则设直线AB:y=kx+m.

OAOBx1x2+y1y2=x1x2+(k x1+m) (k x2+m)=(1+k2) x1x2+k m(x1+x2)=0 代入,得4 m2=3 k2+3原点到直线AB的距离 , 当AB的斜率不存在时, ,可得, 依然成立.所以点O到直线的距离为定值 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,曲线在点处的切线与直线垂直.

1)求的值;

(2)若对于任意的恒成立,求的取值范围;

(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)设函数的图象在点两处的切线分别为l1l2.若,且,求实数c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数在区间上是增函数,且最大值为10,最小值为4,则在区间的最大值、最小值分别是( )

A. -4,-10 B. 4,-10

C. 10,4 D. 不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)证明:

(2)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示, 四棱锥底面是直角梯形, 底面, 的中点, .

(Ⅰ)证明: ;

(Ⅱ)证明: ;

(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在实数,使=成立,则称的不动点.

⑴当时,求的不动点;

(2)当时,函数内有两个不同的不动点,求实数的取值范围;

(3)若对于任意实数,函数恒有两个不相同的不动点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家分析发现“喜欢空间想象”与“性别”有关,某数学兴趣小组为了验证此结论,从全体组员中按分层抽样的方法抽取50名同学(男生30人、女生20人),给每位同学立体几何题、代数题各一道,让各位同学自由选择一道题进行解答,选题情况统计如下表:(单位:人)

立体几何题

代数题

总计

男同学

22

8

30

女同学

8

12

20

总计

30

20

50

(1)能否有97.5%以上的把握认为“喜欢空间想象”与“性别”有关?

(2)经统计得,选择做立体几何题的学生正答率为,且答对的学生中男生人数是女生人数的5倍,现从选择做立体几何题且答错的学生中任意抽取两人对他们的答题情况进行研究,求恰好抽到男女生各一人的概率.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2014山东.理15】已知函数,对函数,定义关于的对称函数为函数满足:对于任意,两个点关于点对称,若关于对称函数,且恒成立,则实数的取值范围是_________.

查看答案和解析>>

同步练习册答案