| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
分析 (1)根据所给的数据,写出5组坐标,作出散点图如图所示.
(2)根据所给的数据先做出横标和纵标的平均数,利用最小二乘法写出线性回归方程系数的表达式,把样本中心点代入求出a的值,得到线性回归方程.
(3)根据所给的变量x的值,把值代入线性回归方程,得到对应的y的值,这里的y的值是一个预报值.
解答 解:(1)根据所给的数据,写出5组坐标,作出散点图如图所示:
…(2分)
(2)求回归直线方程.
$\overline{x}$=$\frac{1}{5}$(2+4+5+6+8)=5,$\overline{y}$=$\frac{1}{5}$(30+40+60+50+70)=50…4分
$\sum _{i=1}^{5}$${x}_{i}^{2}$=145,
$\sum _{i=1}^{5}$xiyi=1380,…6 分
b=$\frac{\sum _{i=1}^{5}{x}_{i}{y}_{i}-5\overline{x}\overline{y}}{\sum _{i=1}^{5}{{x}_{i}}^{2}-5{\overline{x}}^{2}}$=$\frac{1380-5×5×50}{145-5×{5}^{2}}$=6.5,
a=50-6.5×5=17.5
∴因此回归直线方程为y=6.5x+17.5;…10分
(3)当x=12时,预报y的值为y=12×6.5+17.5=95.5万元.
即广告费用为12万元时,销售收入y的值大约是95.5万元.…(12分)
点评 本题考查线性回归方程的求法和应用,本题解题的关键是求出线性回归方程的系数,这是后面解题的先决条件.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{5}}{5}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\frac{\sqrt{15}}{3}$ | D. | $\frac{\sqrt{21}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 13 | B. | $\sqrt{13}$ | C. | 7 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 转速x(转/秒) | 16 | 14 | 12 | 8 |
| 每小时生产有缺点的零件数y件) | 11 | 9 | 8 | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com