精英家教网 > 高中数学 > 题目详情
9.解方程:9x-3x+1-10=0.

分析 令t=3x,(t>0),则原方程可化为:t2-3t-10=0,利用一元二次方程的解法求出满足条件的t值,再化为对数式,可得原方程的解.

解答 解:令t=3x,(t>0),则原方程可化为:t2-3t-10=0,
解得:t=5,或t=-2(舍去),
即3x=5,
则x=log35

点评 本题考查的知识点是指数方程的解法,利用换元法,将方程转化为一元二次方程,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知二次函数f(x)=ax2-bx+1,A={x|1≤x≤3},B={x|1≤x≤4}
(1)若a是从集合A中任取的一个整数,b是从集合B中任取的一个整数,求函数y=f(x)有零点的概率.
(Ⅱ)若a是从集合A中任取的一个实数,b是从集合A中任取的一个实数,求关于x的方程f(x)=0一根在区间(0,1)内,另一根在区间(1,2)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某种产品的广告费用支出x万元与销售额y万元之间有如下的对应数据:
x24568
y3040605070
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为12万元时,销售收入y的值.
附:线性回归方程:$\stackrel{∧}{y}$=bx+a,其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\overline{xy}-\overline{x}\overline{y}}{\overline{{x}^{2}}-{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,B=30°,BC=20,AC=11,则cosA的值是$±\frac{\sqrt{21}}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校的高中生中随机地抽取了300名学生进行调查,得到如下列联表:
喜欢数学不喜欢数学总计
3785122
35143178
总计72228300
由表中数据计算K2≈4.513,判断高中生的性别与是否喜欢数学课程之间是否有关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}a1=t(t为常数,t≠0且t≠1),a2=t2,当n∈N*,n≥2时,an+1=(t+1)an-tan-1
(1)求证{an-1-an}为等比数列,并求数列{an}的通项公式;
(2)若t=2若?n∈N*,A<$\frac{1}{{a}_{2}-{a}_{1}}$+$\frac{1}{{a}_{3}-{a}_{2}}$+…+$\frac{1}{{a}_{n+1}-{a}_{n}}$<B,试求实数A、B的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax3+bx2+cx是R上的奇函数,且f(1)=3,f(2)=12.
(Ⅰ)求a,b,c的值;
(Ⅱ)①证明f(x)在R上是增函数;
②若m3-3m2+5m=5,n3-3n2+5n=1,求m+n的值.
(Ⅲ)若关于x的不等式f(x2-4)+f(kx+2k)<0在(0,1)上恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=lnx+$\frac{k}{x}$,曲线y=f(x)在(1,f(1))处的切线与x轴平行.
(1)求k的值;
(2)令函数h(x)=f(x)-f($\frac{1}{x}$).
①判断函数h(x)的零点个数,并说明理由;
②求证:ln$\frac{1}{n}$>$\frac{n+1}{2n}$-(1+$\frac{1}{2}$+$\frac{1}{3}$…+$\frac{1}{n}$)(n>1,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求证:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<2(n∈N*

查看答案和解析>>

同步练习册答案