精英家教网 > 高中数学 > 题目详情

设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线

(I)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.

(II)求函数y=f(x)的单调增区间;

(III)画出函数y=f(x)在区间[0,π]上的图象.

 

【答案】

(1)   右移个单位 (2)  (3)略

【解析】

试题分析:(1)因为函数f(x)=sin(2x+φ)在对称轴时有最大或最小值,据此就可得到含?的等式,求出?值.因为x=是函数y=f(x)的图象的对称轴,所以sin(2×+?)=±1,即+?=kπ+,k∈Z.因为-π<φ<0,所以?=-

(2)借助基本正弦函数的单调性来解,因为y=sinx在区间[2kπ- ,2kπ+ ],k∈Z上为增函数,所以只需2x-∈[2kπ- ,2kπ+ ],k∈Z,在解出x的范围即可.

(3)利用五点法作图,令x分别取0,,π,求出相应的y值,就可得到函数在区间[0,π]上的点的坐标,再把坐标表示到直角坐标系,用平滑的曲线连接即可得到所求图象。

考点:三角函数的性质

点评:本小题主要考查根据三角函数的性质求解析式,以及单调区间,三角函数图象的画法,考查学生的推理和运算能力

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象过点(
π8
,-1).
(1)求φ;  
(2)求函数y=f(x)的周期和单调增区间;
(3)在给定的坐标系上画出函数y=f(x)在区间,[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2π+?)(-π<?<0),y=f(x)图象的一条对称轴是直线x=
π8

(Ⅰ)求?;
(Ⅱ)求函数y=f(x)的单调增区间;
(Ⅲ)证明直线5x-2y+c=0与函数y=f(x)的图象不相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=
π8

(1)求φ;
(2)怎样由函数y=sin x的图象变换得到函数f(x)的图象,试叙述这一过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)将函数f(x)的图象向右平移
π
3
个单位长度,得到函数g(x)的图象,求g (x)在区间[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<?<
π
2
),给出以下四个论断:
①它的图象关于直线x=
π
12
对称;        
②它的周期为π;
③它的图象关于点(
π
3
,0)对称;      
④在区间[-
π
6
,0]上是增函数.
以其中两个论断作为条件,余下两个论断作为结论,写出你认为正确的两个命题:
(1)
①③⇒②④
①③⇒②④
; (2)
①②⇒③④
①②⇒③④

查看答案和解析>>

同步练习册答案