精英家教网 > 高中数学 > 题目详情
17.已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.
(I)试求常数a、b、c的值;
(II)试求函数f(x)的单调区间.

分析 (Ⅰ)是实数域上的可导函数,可先求导确定可能的极值点,再通过极值点与导数的关系,即极值点必为f′(x)=0的根建立起由极值点x=±1所确定的相关等式,运用待定系数法确定a、b、c的值.
(Ⅱ)求出f′(x)并分解因式讨论x的取值决定f′(x)的正负研究函数的增减性即可.

解答 解:(Ⅰ)由f′(1)=f′(-1)=0,
得3a+2b+c=0,①,3a-2b+c=0,②,
又f(1)=-1,∴a+b+c=-1.③
由①②③解得a=$\frac{1}{2}$,b=0,c=-$\frac{3}{2}$.
(Ⅱ)f(x)=$\frac{1}{2}$x3-$\frac{3}{2}$x,
∴f′(x)=$\frac{3}{2}$x2-$\frac{3}{2}$=$\frac{3}{2}$(x-1)(x+1),
当x<-1或x>1时,f′(x)>0;
当-1<x<1时,f′(x)<0;
故f(x)在(-∞,-1)递增,在(-1,1)递减,在(1,+∞)递增.

点评 考查学生利用导数研究函数极值的能力,以及用待定系数法求函数解析式的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知a,b,c>0,求证$\frac{{{a^2}{b^2}+{b^2}{c^2}+{a^2}{c^2}}}{a+b+c}≥abc$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,短轴顶点在圆x2+y2=4上.
(Ⅰ)求椭圆C方程;
(Ⅱ)已知点P(-2,3),若斜率为1的直线l与椭圆C相交于A,B两点,试探究以AB为底边的等腰三角形ABP是否存在?若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的导函数.
(1)y=x3+2sinx-3cosx
(2)y=sin(2x-5)+ln(3x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.将除颜色外完全相同的一个白球、一个黄球、两个红球分给三个小朋友,且每个小朋友至少分得一个球的分法有21(种).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设M是椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$上的一点,F1,F2为焦点,且$∠{F_1}M{F_2}=\frac{π}{3}$,则△MF1F2的面积为(  )
A.3B.$16(2+\sqrt{3})$C.$16(2-\sqrt{3})$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,$A=\frac{π}{3}$、$BC=3,AB=\sqrt{6}$,则角C等于(  )
A.$\frac{π}{4}或\frac{3π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知|$\overrightarrow{a}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$,($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=$\frac{1}{2}$.
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过坐标原点O的直线l与圆C:(x+1)2+(y-$\sqrt{3}$)2=100相交于A,B两点,当△ABO的面积最大时,则直线l的斜率是(  )
A.$\frac{\sqrt{3}}{3}$B.1C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案