精英家教网 > 高中数学 > 题目详情
12.将除颜色外完全相同的一个白球、一个黄球、两个红球分给三个小朋友,且每个小朋友至少分得一个球的分法有21(种).

分析 把4个小球分成(2,1,1)组,其中2个小球分给同一个小朋友的有4种方法(红红,红黄,红白,白黄),分两类,根据分类计数原理可得.

解答 解:把4个小球分成(2,1,1)组,其中2个小球分给同一个小朋友的有4种方法(红红,红黄,红白,白黄),
若(红红,红黄,红白)分给其中一个小朋友,则剩下的两个球分给2个小朋友,共有3×3×A22=18种,
若(白黄两个小球)分给其中一个小朋友,剩下的两个红色小球只有1种分法,故有3×1=3种,
根据分类计数原理可得,共有18+3=21种.
故答案为:21.

点评 本题考查了分组分配的问题,关键是分组,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知相关变量x和$\stackrel{∧}{y}$满足关系$\stackrel{∧}{y}$=-x+1相关变量y与$\stackrel{∧}{z}$满足$\stackrel{∧}{z}$=3y+4,下列结论中正确的(  )
A.x和$\stackrel{∧}{y}$负相关,y与$\stackrel{∧}{z}$负相关B.x和$\stackrel{∧}{y}$正相关,y与$\stackrel{∧}{z}$正相关
C.x和$\stackrel{∧}{y}$正相关,y与$\stackrel{∧}{z}$负相关D.x和$\stackrel{∧}{y}$负相关,y与$\stackrel{∧}{z}$正相关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2x3-ax2+8.
(1)若f(x)<0对?x∈[1,2]恒成立,求实数a的取值范围;
(2)是否存在实数a,使得函数g(x)=f(x)+4ax2-12a2x+3a3-8在区间(0,1)上存在极小值,若存在,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lg(x2+ax+b)的定义域为A,$g(x)=\sqrt{k{x^2}+4x+k+3}$的定义域为B.
(1)若B=R,求k的取值范围;
(2)若(∁RA)∩B=B,(∁RA)∪B={x|-2≤x≤3},求实数a,b的值及实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=tanx+\frac{1}{tanx}$,若f(α)=5,则f(-α)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.
(I)试求常数a、b、c的值;
(II)试求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知方程$\frac{x^2}{k+1}-\frac{y^2}{k-1}=1$表示双曲线,则k的取值范围是(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.要得到y=sinx的图象只需将$y=sin(\frac{x}{2}+\frac{π}{3})$的图象(  )
A.先向左平移$\frac{2π}{3}$单位,再将图象上各点的横坐标缩短至原来的$\frac{1}{2}$
B.先向右平移$\frac{2π}{3}$单位,再将图象上各点的横坐标缩短至原来的$\frac{1}{2}$
C.先将图象上各点的横坐标缩短至原来的$\frac{1}{2}$,再将图象向左平移$\frac{π}{3}$单位
D.先将图象上各点横坐标扩大为原来的2倍,再将图象向右平移$\frac{π}{3}$单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从一批含有11只正品,2只次品的产品中,不放回地抽取3次,每次抽取1只,设抽得次品数为X,则E(5X+1)的值为(  )
A.$\frac{42}{13}$B.$\frac{12}{13}$C.$\frac{41}{11}$D.$\frac{6}{13}$

查看答案和解析>>

同步练习册答案