精英家教网 > 高中数学 > 题目详情
7.过坐标原点O的直线l与圆C:(x+1)2+(y-$\sqrt{3}$)2=100相交于A,B两点,当△ABO的面积最大时,则直线l的斜率是(  )
A.$\frac{\sqrt{3}}{3}$B.1C.$\sqrt{3}$D.2

分析 当△ABO的面积最大时,线段AB是圆C的直径,且AB⊥OC,由此能求出当△ABO的面积最大时,直线l的斜率.

解答 解:∵过坐标原点O的直线l与圆C:(x+1)2+(y-$\sqrt{3}$)2=100相交于A,B两点,
∴当△ABO的面积最大时,线段AB是圆C的直径,且AB⊥OC,
∵C(-1,$\sqrt{3}$),∴kOC=$\frac{\sqrt{3}}{-1}$=-$\sqrt{3}$,
∴${k}_{AB}=-\frac{1}{{k}_{OC}}$=$\frac{\sqrt{3}}{3}$.
∴当△ABO的面积最大时,直线l的斜率是$\frac{\sqrt{3}}{3}$.
故选:A.

点评 本题考查直线的斜率的求法,考查圆、直线方程、斜率公式、直线与直线垂直等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.
(I)试求常数a、b、c的值;
(II)试求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若无穷数列{an}满足:?k∈N*,对于$?n≥{n_0}({n_0}∈{N^*})$,都有an+k-an=d(其中d为常数),则称{an}具有性质“P(k,n0,d)”.
(Ⅰ)若{an}具有性质“P(3,2,0)”,且a2=3,a4=5,a6+a7+a8=18,求a3
(Ⅱ)若无穷数列{bn}是等差数列,无穷数列{cn}是公比为正数的等比数列,b1=c3=2,b3=c1=8,an=bn+cn,判断{an}是否具有性质“P(2,1,0)”,并说明理由;
(Ⅲ)设{an}既具有性质“P(i,2,d1)”,又具有性质“P(j,2,d2)”,其中i,j∈N*,i<j,i,j互质,求证:{an}具有性质“$P(j-i,i+2,\frac{j-i}{i}{d_1})$”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.现有三张卡片,正面分别标有数字1,2,3,背面完全相同,将卡片洗匀,背面向上放置,甲、乙二人轮流抽取卡片,每人每次抽一张,抽取后不放回,甲先抽.若二人约定,先抽到标有偶数的卡片者获胜,则甲获胜的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从一批含有11只正品,2只次品的产品中,不放回地抽取3次,每次抽取1只,设抽得次品数为X,则E(5X+1)的值为(  )
A.$\frac{42}{13}$B.$\frac{12}{13}$C.$\frac{41}{11}$D.$\frac{6}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在三棱锥PABC中,PA=BC=4,PB=AC=5,PC=AB=$\sqrt{11}$,则三棱锥PABC的外接球的表面积为(  )
A.26πB.12πC.D.24π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C的对边分别为a,b,c,且A=30°,B=15°,a=3,则c的值为(  )
A.6B.$\frac{3}{2}$C.3$\sqrt{3}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{1}{2}$x2-5x+4lnx在[t,t+1]上不单调,则t的取值范围是(  )
A.{t|3>t>2或0<t<1}B.{t|t>2}C.{t|t>3}D.{t|4>t>3或0<t<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线y=x3+3x2-5
(1)求过M(1,-1)的切线方程;
(2)求y=f(x)的单调区间及极值.

查看答案和解析>>

同步练习册答案