| A. | {t|3>t>2或0<t<1} | B. | {t|t>2} | C. | {t|t>3} | D. | {t|4>t>3或0<t<1} |
分析 先由函数求f′(x),再由“函数f(x)在[t,t+1]上不单调”转化为:f′(x)=0在区间(t,t+1)上有解,进而转化为:x2-5x+4=0在(t,t+1)上有解,进而求出答案.
解答 解:∵函数f(x)=$\frac{1}{2}$x2-5x+4lnx,
∴f′(x)=x-5+$\frac{4}{x}$,
∵函数f(x)=$\frac{1}{2}$x2-5x+4lnx在(t,t+1)上不单调,
∴f′(x)=x-5+$\frac{4}{x}$=0在(t,t+1)上有解
∴$\frac{{x}^{2}-5x+4}{x}$=0在(t,t+1)上有解
∴g(x)=x2-5x+4=0在(t,t+1)上有解,
由x2-5x+4=0得:x=1,或x=4,
∴1∈(t,t+1)或4∈(t,t+1),
即t∈(0,1)或(3,4),
故选:D.
点评 本题主要考查导数法研究函数的单调性,基本思路:当函数是增函数时,导数大于等于零恒成立,当函数是减函数时,导数小于等于零恒成立,然后转化为求相应函数的最值问题.注意判别式的应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | 1 | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{1}{3}$ | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若我是高考状元,则我没有考入北大 | |
| B. | 若我不是高考状元,则我考入北大 | |
| C. | 若我没有考入北大,则我不是高考状元 | |
| D. | 若我不是高考状元,则我没有考入北大 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com