精英家教网 > 高中数学 > 题目详情
8.命题“若我是高考状元,则我考入北大”的否命题是(  )
A.若我是高考状元,则我没有考入北大
B.若我不是高考状元,则我考入北大
C.若我没有考入北大,则我不是高考状元
D.若我不是高考状元,则我没有考入北大

分析 根据命题“若p,则q”的否命题是“若¬p,则¬q”,写出即可.

解答 解:命题“若我是高考状元,则我考入北大”的否命题是
“若我不是高考状元,则我没考入北大”.
故选:D.

点评 本题考查了四种命题之间的关系与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.若无穷数列{an}满足:?k∈N*,对于$?n≥{n_0}({n_0}∈{N^*})$,都有an+k-an=d(其中d为常数),则称{an}具有性质“P(k,n0,d)”.
(Ⅰ)若{an}具有性质“P(3,2,0)”,且a2=3,a4=5,a6+a7+a8=18,求a3
(Ⅱ)若无穷数列{bn}是等差数列,无穷数列{cn}是公比为正数的等比数列,b1=c3=2,b3=c1=8,an=bn+cn,判断{an}是否具有性质“P(2,1,0)”,并说明理由;
(Ⅲ)设{an}既具有性质“P(i,2,d1)”,又具有性质“P(j,2,d2)”,其中i,j∈N*,i<j,i,j互质,求证:{an}具有性质“$P(j-i,i+2,\frac{j-i}{i}{d_1})$”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C的对边分别为a,b,c,且A=30°,B=15°,a=3,则c的值为(  )
A.6B.$\frac{3}{2}$C.3$\sqrt{3}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{1}{2}$x2-5x+4lnx在[t,t+1]上不单调,则t的取值范围是(  )
A.{t|3>t>2或0<t<1}B.{t|t>2}C.{t|t>3}D.{t|4>t>3或0<t<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}的各项均为正数,且a1+2a2=1,且a32=4a2•a6
(1)求数列{an}的通项公式;
(2)设bn=log2a1+log2a2+log2a3+…+log2an,求数列$\{\frac{1}{b_n}\}$的前n项和;
(3)设cn=$\frac{{{b_n}•{a_n}}}{n}$,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{3}sinxcosx-{sin^2}x+\frac{1}{2}$.
(1)求f(x)的最小正周期;
(2)求f(x)的单调递增区间;
(3)求f(x)的对称轴及对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$y=acos(2x+\frac{π}{3})+3$,$x∈[0,\frac{π}{2}]$的最大值为4,则正实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线y=x3+3x2-5
(1)求过M(1,-1)的切线方程;
(2)求y=f(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.沧州市第二中学辩论队于2016年12月代表河北省参加第二届京津中学生辩论赛,并获得亚军,现在辩论队由3名男队和5名队员组成.
(1)学校为宣传辩论队取得的优异成绩,需要给全体队员排队照相,要求3名队员互不相邻,有多少种不同排法?
(2)将8名队员分成四个小组,每个小组两人,分别取高一1,2,3,4班四个班开座谈会,有多少种不同的分组方式?
(3)为准备下次的比赛,现从从8名队员中选出4名队员做一辨、二辨、三辨、四辨,要求至少有一名男队员,有多少种不同的选法?

查看答案和解析>>

同步练习册答案