精英家教网 > 高中数学 > 题目详情
5.已知实数x,y满足$\left\{\begin{array}{l}{x-4y≥-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$.
(1)求z=$\frac{y+1}{x+1}$的取值范围;
(2)求z=|x+y+1|最小值.

分析 画出约束条件的可行域,利用目标函数的几何意义求解即可.

解答 解:∵实数x,y满足$\left\{\begin{array}{l}{x-4y≥-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,
∴作出可行域如图所示,
并求顶点坐标A(1,$\frac{22}{5}$),B(1,1),C(5,2),

(1)∵z=$\frac{y+1}{x+1}$=$\frac{y-(-1)}{x-(-1)}$表示可行域内任一点(x,y)与定点D(-1,-1)连线的斜率,
∴由图知kCD≤z≤kAD,又kCD=$\frac{2+1}{5+1}$=$\frac{1}{2}$,kAD=$\frac{\frac{22}{5}+1}{1+1}=\frac{27}{10}$,
∴$\frac{1}{2}≤z≤\frac{27}{10}$,∴z=$\frac{y+1}{x+1}$的取值范围是[$\frac{1}{2}$,$\frac{27}{10}$].
(2)∵z=|x+y+1|,∴d=$\frac{z}{\sqrt{2}}$=$\frac{|x+y+1|}{\sqrt{2}}$表示可行域内任一点到直线x+y+1=0的距离.在图中作出直线x+y+1=0,由图易知可行域中的点B到该直线的距离最小
∴点B到该直线的距离d0=$\frac{|1+1+1|}{\sqrt{2}}$=$\frac{3}{\sqrt{2}}$,
∴dmin=$\frac{{z}_{min}}{\sqrt{2}}$,可得z=|x+y+1|最小值为:3.

点评 本题考查线性规划的简单应用,画出约束条件的可行域,目标函数的几何意义的解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.现有三张卡片,正面分别标有数字1,2,3,背面完全相同,将卡片洗匀,背面向上放置,甲、乙二人轮流抽取卡片,每人每次抽一张,抽取后不放回,甲先抽.若二人约定,先抽到标有偶数的卡片者获胜,则甲获胜的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{1}{2}$x2-5x+4lnx在[t,t+1]上不单调,则t的取值范围是(  )
A.{t|3>t>2或0<t<1}B.{t|t>2}C.{t|t>3}D.{t|4>t>3或0<t<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{3}sinxcosx-{sin^2}x+\frac{1}{2}$.
(1)求f(x)的最小正周期;
(2)求f(x)的单调递增区间;
(3)求f(x)的对称轴及对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$y=acos(2x+\frac{π}{3})+3$,$x∈[0,\frac{π}{2}]$的最大值为4,则正实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=4+loga(x-2),(a>0,且a≠1)其图象过定点P,角α的始边与x轴的正半轴重合,顶点为坐标原点,终边过定点P,则$\frac{sinα+2cosα}{sinα-cosα}$=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线y=x3+3x2-5
(1)求过M(1,-1)的切线方程;
(2)求y=f(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,其初始位置为A0($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),12秒旋转一周,则动点A的纵坐标y关于时间t(单位:秒)的函数解析式为(  )
A.$y=sin(\frac{π}{3}t+\frac{π}{6})$B.$y=cos(\frac{π}{6}t+\frac{π}{3})$C.$y=sin(\frac{π}{6}t+\frac{π}{3})$D.$y=cos(\frac{π}{3}t+\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z=2-i在复平面对应的点在第几象限(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案