精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2g(x)=
12
λf′(x)+sinx
在[-1,1]上是减函数.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若g(x)≤λ+3sin1在x∈[-1,1]上恒成立,求λ的取值范围.
分析:(1)利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.
(2)求出函数的导数,推出g(x),通过g(x)≤λ+3sin1在x∈[-1,1]上恒成立,转化为λ≥-2sin1,求λ的取值范围;
解答:解:(1)∵f(x)=x2,∴f′(x)=2x,∴f′(1)=2,∴y=f(x)在点(1,f(1))处的切线方程为y-1=2(x-1),即2x-y-1=0;
(2)由题意得g(x)=λx+sinx,所以g'(x)=λ+cosx,
因g(x)在[-1,1]上单调递减,所以g'(x)≤0在[-1,1]上恒成立,
即λ≤-cosx在[-1,1]上恒成立,得λ≤-1.(3分)
因g(x)在[-1,1]上单调递减,所以[g(x)]max=g(-1)=-λ-sin1,
又g(x)≤λ+3sin1在x∈[-1,1]上恒成立,故只需-λ-sin1≤λ+3sin1恒成立
所以λ≥-2sin1,又sin30°<sin1,所以1<2sin1,故-2sin1≤λ≤-1
点评:本小题主要考查利用导数研究曲线上某点切线方程、考查函数导数在解决恒成立问题的应用,注意转化思想的应用,恒成立的应用,是难度较大的题目,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案