已知函数的图象过点P(0,2),且在点M处的切线方程为.
(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.
科目:高中数学 来源: 题型:解答题
(本小题满分16分)已知
(I)如果函数的单调递减区间为,求函数的解析式;
(II)在(Ⅰ)的条件下,求函数的图像在点处的切线方程;
(III)若不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=+6x的图象关于y轴对称.
(1)求m、n的值及函数y=f(x)的单调区间;(6分)
(2)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.(6分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(1) 求的值;
(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数=,.
(1)求函数在区间上的值域T;
(2)是否存在实数,对任意给定的集合T中的元素t,在区间上总存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由;
(3
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.
(Ⅰ)求,,的值;(Ⅱ)求函数的单调递增区间.
(Ⅲ)求函数在上的最大值和最小值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com