精英家教网 > 高中数学 > 题目详情
已知tanA=
3
4
,则sin2A=(  )
A、
24
25
B、-
24
25
C、±
24
25
D、±
12
25
考点:二倍角的正弦,同角三角函数基本关系的运用
专题:三角函数的求值
分析:把tanA=
3
4
代入sin2A=
2sinAcosA
cos2A+sin2A
=
2tanA
1+tan2A
,计算求得结果.
解答: 解:∵tanA=
3
4
,∴sin2A=
2sinAcosA
cos2A+sin2A
=
2tanA
1+tan2A
=
3
2
1+
9
16
=
24
25

故选:A.
点评:本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=4x-m•2x+1,g(x)=
2x-1
2x+1
,若存在实数a,b同时满足方程g(a)+g(b)=0和f(a)+f(b)=0,则实数m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,该程序运行后输出的S为(  )
A、-
1
2
B、2
C、-3
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

0
|sinx|dx等于(  )
A、0B、1C、2D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z=3+4i,则
|z|
z
=(  )
A、
3
5
-
4
5
i
B、-
3
5
-
4
5
i
C、
3
5
+
4
5
i
D、-
3
5
+
4
5
i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为
y
=1.4x+a,则a的值等于(  )
A、0.9B、0.8
C、0.6D、0.2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2]时,f(x)=ex-1,则f(2013)+f(-2014)=(  )
A、e-1B、1-e
C、-1-eD、e+1

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100(5x+1-
3
x
)元.若生产该产品900千克,则该工厂获得最大利润时的生产速度为(  )
A、5千克/小时
B、6千克/小时
C、7千克/小时
D、8千克/小时

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
),又cos(φ+
π
2
)=-
2
2

(1)求φ的值.
(2)若f(x)最大值与最小值之差等于4,其相邻两条对称轴之间的距离等于
π
2
,求函数f(x)的解析式.
(3)作出函数f(x)在区间[0,π]内的图象.

查看答案和解析>>

同步练习册答案