精英家教网 > 高中数学 > 题目详情

【题目】我国古代数学名著《续古摘奇算法》(杨辉著)一书中有关于三阶幻方的问题:将1, 2, 3, 4, 5, 6, 7, 8, 9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等 (如图所示),我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是__________.

8

3

4

1

5

9

6

7

2

【答案】8

【解析】三阶幻方,是最简单的幻方,由1,2,3,4,5,6,7,8,9.其中有8种排法

4 9 2、3 5 7、8 1 6;2 7 6、9 5 1、4 3 8;

2 9 4、7 5 3、6 1 8;4 3 8、9 5 1、2 7 6;

8 1 6、3 5 7、4 9 2;6 1 8、7 5 3、2 9 4;

6 7 2、1 5 9、8 3 4;8 3 4、1 5 9、6 7 2.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某土特产销售总公司为了解其经营状况,调查了其下属各分公司月销售额和利润,得到数据如下表:

分公司名称

雅雨

雅鱼

雅女

雅竹

雅茶

月销售额(万元)

3

5

6

7

9

月利润额(万元)

2

3

3

4

5

在统计中发现月销售额和月利润额具有线性相关关系.

(1)根据如下的参考公式与参考数据,求月利润额与月销售额之间的线性回归方程;

(2)若该总公司还有一个分公司“雅果”月销售额为10万元,试估计它的月利润额是多少?

(参考公式: ,其中:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地最近十年粮食需求量逐年上升,下表是部分统计数据:

年份

2006

2008

2010

2012

2014

需求量(万吨)

236

246

257

276

286

(1)利用所给数据求年需求量与年份之间的回归方程x+

(2)利用(1)中所求出的直线方程预测该地2018年的粮食需求量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点, 为坐标原点,点在椭圆上,线段轴的交点满足

(Ⅰ)求椭圆的标准方程;

(Ⅱ)圆是以为直径的圆,一直线与圆相切,并与椭圆交于不同的两点,当,且满足时,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在

之外的零件数,求

(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得 ,其中为抽取的第个零件的尺寸,

用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计(精确到0.01).

附:若随机变量服从正态分布,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出这两种鱼各1 000,给每条鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机地捕出1 000条鱼,记录下其中有记号的鱼的数目,立即放回池塘中.这样的记录做了10,并将记录获取的数据制作成如图所示的茎叶图.

(1)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;

(2)为了估计池塘中鱼的总质量,现按照(1)中的比例对100条鱼进行称重,根据称重鱼的质量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图是按上述分组方法得到的频率分布直方图的一部分.

估计池塘中鱼的质量在3千克以上(3千克)的条数;

若第三组鱼的条数比第二组多7条、第四组鱼的条数比第三组多7,请将频率分布直方图补充完整;

的条件下估计池塘中鱼的质量的众数及池塘中鱼的总质量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)用定义证明函数上是增函数;

(2)探究是否存在实数使得函数为奇函数?若存在,求出的值;若不存在,请说明理由;

3)在(2)的条件下,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次电影展映活动中,展映的影片有科幻片和文艺片两种类型,统计一随机抽样调查的样本数据显示,100名男性观众中选择科幻片的有60名,女性观众中有的选择文艺片,选择文艺片的观众中男性观众和女性观众一样多.

(Ⅰ)根据以上数据完成下列列联表

(Ⅱ)能否在犯错误的概率不超过0.01的前提下,认为选择影片类型与性别有关?

附:

0.10

0.05

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数),的导函数.

(Ⅰ)当时,求证

(Ⅱ)是否存在正整数,使得对一切恒成立?若存在,求出的最大值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案