精英家教网 > 高中数学 > 题目详情
14.已知α∈(0,$\frac{π}{2}$),β∈(0,π),且tanα=$\frac{cosβ}{1-sinβ}$,则(  )
A.2$α+β=\frac{π}{2}$B.3$α+β=\frac{π}{2}$C.2$α-β=\frac{π}{2}$D.3$α-β=\frac{π}{2}$

分析 由已知等式化弦为切,再由角的范围可得$α=\frac{π}{4}+\frac{β}{2}$,进一步得到2$α-β=\frac{π}{2}$.

解答 解:由tanα=$\frac{cosβ}{1-sinβ}$,得tanα=$\frac{co{s}^{2}\frac{β}{2}-si{n}^{2}\frac{β}{2}}{(cos\frac{β}{2}-sin\frac{β}{2})^{2}}=\frac{cos\frac{β}{2}+sin\frac{β}{2}}{cos\frac{β}{2}-sin\frac{β}{2}}$=$\frac{1+tan\frac{β}{2}}{1-tan\frac{β}{2}}=\frac{tan\frac{π}{4}+tan\frac{β}{2}}{1-tan\frac{π}{4}tan\frac{β}{2}}$=$tan(\frac{π}{4}+\frac{β}{2})$,
∵α∈(0,$\frac{π}{2}$),β∈(0,π),
∴$\frac{π}{4}+\frac{β}{2}$∈($\frac{π}{4},\frac{3π}{4}$),则$α=\frac{π}{4}+\frac{β}{2}$,
∴2$α-β=\frac{π}{2}$.
故选:C.

点评 本题考查三角函数的化简求值,考查了倍角公式及两角和的正切,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知抛物线y2=2px,(p>0)上存在两点关于直线y=x-1对称,则p的取值范围是0<p<$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=sinx(x∈[0,π])图象上两个点A(x1,y1),B(x2,y2)(x1<x2)满足AB∥x轴,点C的坐标为(π,0),则四边形OABC的面积取最大值时,x1+tanx1=π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)过点P($\frac{3}{2}$,1),且离心率e=$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)若F1、F2为椭圆的上下两个焦点,A、B为椭圆的两点,且$\overrightarrow{A{F}_{1}}$=$\frac{1}{2}$$\overrightarrow{B{F}_{2}}$,求直线AF1的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是(  )
A.ξ=4B.ξ=5C.ξ=6D.ξ≤5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是$\frac{1}{2}$外,其余每局比赛甲队获胜的概率都是$\frac{2}{3}$.假设各局比赛结果相互独立.
(1)分别求甲队以3:0,3:1,3:2获胜的概率;
(2)若比赛结果为3:0或3:1,则胜利方得3分、对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求甲队得分X的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\frac{1}{xlnx}$(x>0且x≠1),求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=x-\frac{a}{x}$,g(x)=2ln(x+m).
(1)当m=0,存在x0∈[$\frac{1}{e}$,e](e为自然对数的底数),使$f({x_0})≥\frac{{g({x_0})}}{x_0}$,求实数a的取值范围;
(2)当a=m=1时,设H(x)=xf(x)+g(x),在H(x)的图象上是否存在不同的两点A(x1,y1),B(x2,y2)(x1>x2>-1),使得H(x1)-H(x2)=$H'(\frac{{{x_1}+{x_2}}}{2})•({x_1}-{x_2})$?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=ex-e-x-2x,下列结论正确的是(  )
A.f(2x)min=f(0)B.f(2x)max=f(0)
C.f(2x)在(-∞,+∞)上递减,无极值D.f(2x)在(-∞,+∞)上递增,无极值

查看答案和解析>>

同步练习册答案