精英家教网 > 高中数学 > 题目详情
1.已知抛物线y2=2px,(p>0)上存在两点关于直线y=x-1对称,则p的取值范围是0<p<$\frac{2}{3}$.

分析 设出A,B两点的坐标,因为A,B在抛物线上,把两点的坐标代入抛物线方程,作差后求出AB中点的纵坐标,又AB的中点在直线x+y-1=0上,代入后求其横坐标,然后由AB中点在抛物线内部列不等式求得实数p的取值范围.

解答 解:设A(x1,y1),B(x2,y2),
因为点A和B在抛物线上,所以有y12=2px1①,y22=2px2
①-②得整理得$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{2p}{{y}_{1}+{y}_{2}}$,
因为A,B关于直线x+y-1=0对称,所以kAB=1,即$\frac{2p}{{y}_{1}+{y}_{2}}$=1.
所以y1+y2=2p.
设AB的中点为M(x0,y0),则y0=p.
又M在直线x+y-1=0上,所以x0=1-y0=1-p.
则M(1-p,p).
因为M在抛物线内部,所以y02-2px0<0.
即p2-2p(1-p)<0,解得0<p<$\frac{2}{3}$.
所以p的取值范围是0<p<$\frac{2}{3}$.
故答案为:0<p<$\frac{2}{3}$.

点评 本题考查了直线与圆锥曲线的位置关系,考查了点差法,是解决与弦中点有关问题的常用方法,解答的关键是由AB中点在抛物线内部得到关于p的不等式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=sin({x+\frac{7}{4}π})+cos({x-\frac{3}{4}π})$
(1)求f(x)的最小正周期和最小值;
(2)已知cos(β-α)=$\frac{4}{5}$,cos(β+α)=-$\frac{4}{5}$,0<α<β≤$\frac{π}{2}$,求$f({2β-\frac{π}{4}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=sinx-cosx+1,x∈R.
(1)求f(x)的最小正周期和最大值;
(2)求f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,点E是PC的中点,F在直线PA上.
(1)若EF⊥PA,求$\frac{PF}{PA}$的值;
(2)求二面角P-BD-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)的导数为f′(x)=4x3-4x,且图象过定点(0,-5),求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+1)=f(x-1),当0≤x≤1时,f(x)=x2,若函数y=f(x)-x-a在[0,2]内有三个不同的零点,则实数a的取值范围为$-\frac{1}{4}<a<0$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求证函数y=ln$\frac{1}{1+x}$满足关系式x$\frac{dy}{dx}$+1=ey

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)=xa-ax(0<a<1),则f(x)在[0,+∞)内的极大值点x0等于(  )
A.0B.aC.1D.1-a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知α∈(0,$\frac{π}{2}$),β∈(0,π),且tanα=$\frac{cosβ}{1-sinβ}$,则(  )
A.2$α+β=\frac{π}{2}$B.3$α+β=\frac{π}{2}$C.2$α-β=\frac{π}{2}$D.3$α-β=\frac{π}{2}$

查看答案和解析>>

同步练习册答案