精英家教网 > 高中数学 > 题目详情
11.已知函数$f(x)=sin({x+\frac{7}{4}π})+cos({x-\frac{3}{4}π})$
(1)求f(x)的最小正周期和最小值;
(2)已知cos(β-α)=$\frac{4}{5}$,cos(β+α)=-$\frac{4}{5}$,0<α<β≤$\frac{π}{2}$,求$f({2β-\frac{π}{4}})$的值.

分析 (1)先利用诱导公式和辅助角公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,结合三角函数的图象和性质,求出f(x)的最小值.
(2)求出$f({2β-\frac{π}{4}})$化简,利用cos(β-α)=$\frac{4}{5}$,cos(β+α)=-$\frac{4}{5}$,0<α<β≤$\frac{π}{2}$,构造出α,β的关系.从而可以求值.

解答 解:函数$f(x)=sin({x+\frac{7}{4}π})+cos({x-\frac{3}{4}π})$
化解:f(x)=sin(2π-$\frac{π}{4}$+x)+cos(-π+$\frac{π}{4}$+x)=-sin($\frac{π}{4}$-x)-cos($\frac{π}{4}$+x)=2sin(x-$\frac{π}{4}$)
(1)函数的最小正周期T=$\frac{2π}{ω}=\frac{2π}{1}=2π$;
∵sin的最小值为-1,
∴f(x)的最小值为:-2.
(2)∵f(x)=2sin(x-$\frac{π}{4}$)
∴$f({2β-\frac{π}{4}})$=2sin(2β-$\frac{π}{2}$)=-2cos2β.
又∵cos(β-α)=$\frac{4}{5}$,cos(β+α)=-$\frac{4}{5}$,
∵0<α<β≤$\frac{π}{2}$,
∴$-\frac{π}{2}$<β-α<0,0<β+α<π,
∴sin(β-α)=-$\frac{3}{5}$,cos(β+α)=$\frac{3}{5}$
∵cos2β=cos[(β-α)+(β+α)]=$\frac{3}{5}×\frac{4}{5}$+$\frac{3}{5}×\frac{4}{5}$=$\frac{24}{25}$
故得$f({2β-\frac{π}{4}})$=-cos2β=-$\frac{24}{25}$.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,两角和与差的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.对于两个定义域相同的函数f(x),g(x),若存在实数m,n使h(x)=mf(x)+ng(x),则称函数h(x)是由“基函数f(x),g(x)”生成的.
(Ⅰ)若h(x)=2x2+3x+1由函数f(x)=x2+ax,g(x)=x+b生成,$b∈[\frac{1}{2},\;1]$,求a+2b的取值范围;
(Ⅱ)试利用“基函数$f(x)={log_4}({4^x}+1),g(x)=x-1$”生成一个函数h(x),使之满足下列条件:
①是偶函数;
②有最小值1.
求h(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图四棱锥P-ABCD中,底面ABCD为平行四边形,∠ABC=60°,PA=AB=1,BC=2,PA⊥底面ABCD
(1)求PB与AC所成角的大小
(2)求A点到平面PBC的距离h.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为了调查胃病是否与生活规律有关,在某地对540名40岁以上的人进行了调查,结果是:患胃病者生活不规律的共80人,患胃病者生活规律的共20人,未患胃病者生活不规律的共240人,未患胃病者生活规律的共200人.
(1)根据以上数据列出2×2列联表.
(2)能否在犯错误的概率不超过0.001的前提下认为40岁以上的人患胃病和生活规律有关系?
参考公式与临界值表:${K_{\;}}^2=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.1000.0500.0250.0100.001
ko2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数${f_{\;}}(x)={x^3}-3{a^2}x-1$,(a<0).
(1)求f(x)的单调增区间;
(2)若f(x)在x=-1处取得极值,直线y=t与y=f(x)的图象有三个不同的交点,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{xn}中,x1=tanα,且xn+1=$\frac{1+{x}_{n}}{1-{x}_{n}}$,求出x1,x2,x3并猜想通项公式xn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知曲线C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$,θ为参数,以直角坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)若M(2,0),N为曲线C上的任意一点,求线段MN中点的轨迹的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=xe-x,x∈[0,4]的最小值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知抛物线y2=2px,(p>0)上存在两点关于直线y=x-1对称,则p的取值范围是0<p<$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案