精英家教网 > 高中数学 > 题目详情
20.函数f(x)=xe-x,x∈[0,4]的最小值是0.

分析 先求出导函数f′(x),由f′(x)>0和f′(x)<0,求出x的取值范围,得出函数f(x)的单调区间,从而求出函数的最值.

解答 解:函数f(x)=xe-x,可得f′(x)=$\frac{1-x}{{e}^{x}}$,
当x∈[0,1)时,f′(x)>0,f(x)单调递增,当x∈(1,4]时,f′(x)<0,f(x)单调递减,
∵f(0)=0,f(4)=$\frac{4}{{e}^{4}}$>0,∴当x=0时,f(x)有最小值,且f(0)=0.
故答案为:0.

点评 本题考查的是利用导数,判断函数的单调性,从而求出最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知点M是⊙O:x2+y2=4上一动点,A(4,0),点P为线段AM的中点,
(1)求点P的轨迹C的方程
(2)过点A的直线与轨迹C有公共点,求的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=sin({x+\frac{7}{4}π})+cos({x-\frac{3}{4}π})$
(1)求f(x)的最小正周期和最小值;
(2)已知cos(β-α)=$\frac{4}{5}$,cos(β+α)=-$\frac{4}{5}$,0<α<β≤$\frac{π}{2}$,求$f({2β-\frac{π}{4}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x2+ax+b(a,b∈R),如果?x0,使f(x0)=0.且?x∈R,都有f(x)≥f(x0)成立.又若关于x的不等式f(x)<c的解集为(m,m+8),则实数c的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=-4+\frac{{\sqrt{3}}}{2}t}\\{y=\frac{1}{2}t}\end{array}}\right.$(t为参数),则直线l的倾斜角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=$\frac{x+1}{{x}^{2}+5x+6}$(x>-1)的最大值是3$-2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=sinx-cosx+1,x∈R.
(1)求f(x)的最小正周期和最大值;
(2)求f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,点E是PC的中点,F在直线PA上.
(1)若EF⊥PA,求$\frac{PF}{PA}$的值;
(2)求二面角P-BD-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)=xa-ax(0<a<1),则f(x)在[0,+∞)内的极大值点x0等于(  )
A.0B.aC.1D.1-a

查看答案和解析>>

同步练习册答案