【题目】已知函数
.
![]()
(1)用分段函数的形式表示函数
的解析式,并画出
在
上的大致图像;
(2)若关于x的方程
恰有一个实数解,求出实数m的取值范围组成的集合;
(3)当
时,求函数
的值域.
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若
,
,求
的值域;
(2)当
时,求
的最小值
;
(3)是否存在实数
、
,同时满足下列条件:①
;② 当
的定义域为
时,其值域为
.若存在,求出
、
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据以往的经验,某建筑工程施工期间的降水量
(单位:
)对工期的影响如下表:
![]()
根据某气象站的资料,某调查小组抄录了该工程施工地某月前20天的降水量的数据,绘制得到降水量的折线图,如下图所示.
![]()
(1)求这20天的平均降水量;
(2)根据降水量的折线图,分别估计该工程施工延误天数
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1),平面直角坐标系中,
的方程为
,
的方程为
,两圆内切于点
,动圆
与
外切,与
内切.
![]()
(1)求动圆
圆心
的轨迹方程;
(2)如图(2),过
点作
的两条切线
,若圆心在直线
上的
也同时与
相切,则称
为
的一个“反演圆”
![]()
(ⅰ)当
时,求证:
的半径为定值;
(ⅱ)在(ⅰ)的条件下,已知
均与
外切,与
内切,且
的圆心为
,求证:若
的“反演圆”
相切,则
也相切。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点,焦点在x轴上的椭圆C的离心率为
,且经过点M(1,
),过点P(2,1)的直线l与椭圆C相交于不同的两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,满足
?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数集
(
,
)具有性质P;对任意的i,j(
),
与
两数中至少有一个属于A.
(1)分别判断数集
与
是否具有性质P,并说明理由;
(2)证明:
,且
;
(3)当
时,若
,求集合A.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com