精英家教网 > 高中数学 > 题目详情

【题目】已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点M(1),过点P(2,1)的直线l与椭圆C相交于不同的两点AB.

1)求椭圆C的方程;

2)是否存在直线l,满足?若存在,求出直线l的方程;若不存在,请说明理由.

【答案】1;(2)存在,.

【解析】试题分析(1)先设椭圆的标准方程,将点代入得到一个方程,根据离心率得到一个关系式,再由可得到的值,进而得到椭圆的方程.(2)假设存在直线满足条件,设直线方程为,然后与椭圆方程联立消去得到一元二次方程,且方程一定有两根,故应大于得到的范围,进而可得到两根之和、两根之积的表达式,再表示出,再代入关系式可确定的值,从而得解.

试题解析:(1)设椭圆C的方程为

由题意得解得.故椭圆C的方程为.

(2)若存在直线l满足条件,由题意可设直线l的方程为,由

.

因为直线l与椭圆C相交于不同的两点AB

AB两点的坐标分别为

所以

整理得,解得.

,且

所以

.

所以

解得.

所以k.于是存在直线l满足条件,

其方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列推理不属于合情推理的是( )

A. 由铜、铁、铝、金、银等金属能导电,得出一切金属都能导电.

B. 半径为的圆面积,则单位圆面积为.

C. 由平面三角形的性质推测空间三棱锥的性质.

D. 猜想数列2,4,8,…的通项公式为. .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一个总体的100个个体编号为01299,并依次将其分为10个组,组号为0129.要用系统抽样法抽取一个容量为10的样本,如果在第0(号码为0—9)随机抽取的号码为2,则抽取的10个号码为______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

的定义域为R,求a的取值范围;

,求的单调区间;

是否存在实数a,使上为增函数?若存在,求出a的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=,其中2<m<2,m∈Z,满足:

(1)f(x)是区间(0,+∞)上的增函数;

(2)对任意的x∈R,都有f(x) +f(x)=0.

求同时满足条件(1)、(2)的幂函数f(x)的解析式,并求x∈[0,3]时,f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面

)求二面角的正弦值.

)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中心在原点,焦点在轴上的椭圆,下顶点,且离心率.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)经过点且斜率为的直线交椭圆于 两点.在轴上是否存在定点,使得恒成立?若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,焦点为,过点的直线交抛物线于两点,则的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国庆期间,某旅行社组团去风景区旅游,若旅行团人数不超过20人,每人需交费用800元;若旅行团人数超过20人,则给予优惠:每多1人,人均费用减少10元,直到达到规定人数60人为止.旅行社需支付各种费用共计10000.

(1)写出每人需交费用S关于旅行团人数的函数;

(2)旅行团人数x为多少时,旅行社可获得最大利润?最大利润是多少?

查看答案和解析>>

同步练习册答案