【题目】已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点M(1,),过点P(2,1)的直线l与椭圆C相交于不同的两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,满足?若存在,求出直线l的方程;若不存在,请说明理由.
【答案】(1);(2)存在,.
【解析】试题分析(1)先设椭圆的标准方程,将点代入得到一个方程,根据离心率得到一个关系式,再由可得到的值,进而得到椭圆的方程.(2)假设存在直线满足条件,设直线方程为,然后与椭圆方程联立消去得到一元二次方程,且方程一定有两根,故应大于得到的范围,进而可得到两根之和、两根之积的表达式,再表示出,再代入关系式可确定的值,从而得解.
试题解析:(1)设椭圆C的方程为,
由题意得解得.故椭圆C的方程为.
(2)若存在直线l满足条件,由题意可设直线l的方程为,由
得.
因为直线l与椭圆C相交于不同的两点A,B,
设A,B两点的坐标分别为,
所以
整理得,解得.
又,,且
即,
所以,
即.
所以,
解得.
所以k=.于是存在直线l满足条件,
其方程为.
科目:高中数学 来源: 题型:
【题目】下列推理不属于合情推理的是( )
A. 由铜、铁、铝、金、银等金属能导电,得出一切金属都能导电.
B. 半径为的圆面积,则单位圆面积为.
C. 由平面三角形的性质推测空间三棱锥的性质.
D. 猜想数列2,4,8,…的通项公式为. .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一个总体的100个个体编号为0,1,2,…,99,并依次将其分为10个组,组号为0,1,2,…,9.要用系统抽样法抽取一个容量为10的样本,如果在第0组(号码为0—9)随机抽取的号码为2,则抽取的10个号码为______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数f(x)=,其中2<m<2,m∈Z,满足:
(1)f(x)是区间(0,+∞)上的增函数;
(2)对任意的x∈R,都有f(x) +f(x)=0.
求同时满足条件(1)、(2)的幂函数f(x)的解析式,并求x∈[0,3]时,f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中心在原点,焦点在轴上的椭圆,下顶点,且离心率.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)经过点且斜率为的直线交椭圆于, 两点.在轴上是否存在定点,使得恒成立?若存在,求出点坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国庆期间,某旅行社组团去风景区旅游,若旅行团人数不超过20人,每人需交费用800元;若旅行团人数超过20人,则给予优惠:每多1人,人均费用减少10元,直到达到规定人数60人为止.旅行社需支付各种费用共计10000元.
(1)写出每人需交费用S关于旅行团人数的函数;
(2)旅行团人数x为多少时,旅行社可获得最大利润?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com