精英家教网 > 高中数学 > 题目详情

【题目】设二次函数f(x)=ax2+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立.
(1)求函数f(x)的表达式;
(2)设g(x)=kx+1,若F(x)=g(x)﹣f(x),求F(x)在[1,2]上的最小值;
(3)设g(x)=kx+1,若G(x)=在区间[1,2]上是增函数,求实数k的取值范围.

【答案】
解:(1)由题意知
(2)F(x)=g(x)﹣f(x)=﹣x2+(k﹣2)x,x∈[1,2],对称轴x=
≤3,即k≤5时,F(x)max=F(2)=2k﹣8
,即k>5时,F(x)max=F(1)=k﹣3
综上所述,
(3)G(x)==
由G(x)在区间[1,2]上是增函数得F(x)=﹣x2+(k﹣2)x在[1,2]上为增函数且恒非负

【解析】(1)利用题意,推出混合组,求出a、b、c,即可求函数f(x)的表达式;
(2)化简函数F(x)=g(x)﹣f(x)的表达式,通过对称轴所在位置,讨论即可求F(x)在[1,2]上的最小值
(3)通过化简表达式,在区间[1,2]上是增函数,转化F(x)=﹣x2+(k﹣2)x在[1,2]上为增函数且恒非负,得到不等式组,即可求实数k的取值范围.
【考点精析】本题主要考查了函数单调性的性质的相关知识点,需要掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图空间四边形ABCD,E、F、G、H分别为AB、AD、CB、CD的中点且AC=BD,AC⊥BD,试判断四边形EFGH的形状,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=3sin(ωx+φ)(ω>0,﹣<φ<)的图象关于直线x=对称,它的周期是π,则以下结论正确的个数(  )
(1)f(x)的图象过点(0,
(2)f(x)的一个对称中心是(,0)
(3)f(x)在[,]上是减函数
(4)将f(x)的图象向右平移|φ|个单位得到函数y=3sinωx的图象.
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, 垂直于底面 分别为 的中点.

(Ⅰ)求证:

(Ⅱ)求四棱锥的体积和截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求函数的单调区间;

)当时,证明:(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心坐标,直线被圆截得弦长为

(Ⅰ)求圆的方程;

(Ⅱ)从圆外一点向圆引切线,求切线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.

年龄(单位:岁)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(Ⅱ)若从年龄在[25,35)和[55,65)的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在[55,65)的概率.

参考数据如下:

附临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的观测值: (其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段: ,…, ,得到如图所示的频率分布直方图.

(1)求图中实数的值;

(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;

(3)若从数学成绩在两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:

超市

A

B

C

D

E

F

G

广告费支出

1

2

4

6

11

13

19

销售额

19

32

40

44

52

53

54

1)若用线性回归模型拟合的关系,求关于的线性回归方程;

2)用二次函数回归模型拟合的关系,可得回归方程:

经计算二次函数回归模型和线性回归模型的分别约为,请用说明选择哪个回归模型更合适,并用此模型预测超市广告费支出为3万元时的销售额.

参数数据及公式:

查看答案和解析>>

同步练习册答案