精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=3sin(ωx+φ)(ω>0,﹣<φ<)的图象关于直线x=对称,它的周期是π,则以下结论正确的个数(  )
(1)f(x)的图象过点(0,
(2)f(x)的一个对称中心是(,0)
(3)f(x)在[,]上是减函数
(4)将f(x)的图象向右平移|φ|个单位得到函数y=3sinωx的图象.
A.4
B.3
C.2
D.1

【答案】C
【解析】解:∵f(x)=3sin(ωx+φ)(ω>0,﹣<φ<)的周期是π,
∴ω=2,
又图象关于直线x=对称,则2×+φ=kπ+ , 即φ= , k∈Z.
∵﹣<φ<
∴取k=1得φ=
∴f(x)=3sin(2x+).
①∵f(0)=3sin=
∴f(x)的图象过点(0,)错误;
②∵f()=3sin(2×+)=3sinπ=0.
∴f(x)的一个对称中心是(,0)正确;
③由,得:

取k=0,得
∴f(x)在[,]上是减函数正确;
④∵φ=>0,
∴f(x)=3sin(ωx+φ)=3sinω(x+)是把y=3sinωx
向左平移个单位得到,
则f(x)的图象向右平移个单位得到函数y=3sinωx的图象.
∴命题④错误.
【考点精析】利用函数y=Asin(ωx+φ)的图象变换对题目进行判断即可得到答案,需要熟知图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,试求的单调增区间;

(2)试求上的最大值;

(3)当时,求证:对于恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体由一个正三棱柱截去一个三棱锥而得, 平面 的中点, 为棱上一点,且平面.

(1)若在棱上,且,证明: 平面

(2)过作平面的垂线,垂足为,确定的位置(说明作法及理由),并求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20海里的C点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5个球放入3个盒子,在下列不同条件下,各有多少种投放方法?

小球不同,盒子不同,盒子不空

②小球不同,盒子不同,盒子可空

③球不同,盒子相同,盒子不空

④小球不同,盒子相同,盒子可空

⑤小球相同,盒子不同,盒子不空

⑥小球相同,盒子不同,盒子可空

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域D,如果存在正实数m,使得对任意x∈D,都有f(x+m)>f(x),则称f(x)为D上的“m型增函数”.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x﹣a|﹣a(a∈R).若f(x)为R上的“20型增函数”,则实数a的取值范围是(  )
A.a>0
B.a<5
C.a<10
D.a<20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为增强市民的环保意识,某市面向全市增招环保知识义务宣传志愿者,从符合条件的志愿者中随机选取名志愿者,其年龄频率分布直方图如图所示,其中年龄(岁)分成五组:第,第,第,第,第,得到的频率分布直方图(局部)如图所示.

(1)求第组的频率,并在图中补画直方图;

(2)从名志愿者中再选出年龄低于岁的志愿者名担任主要宣讲人,求这名主要宣讲人的年龄在不同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数f(x)=ax2+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立.
(1)求函数f(x)的表达式;
(2)设g(x)=kx+1,若F(x)=g(x)﹣f(x),求F(x)在[1,2]上的最小值;
(3)设g(x)=kx+1,若G(x)=在区间[1,2]上是增函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据某市地产数据研究的数据显示,2016年该市新建住宅销售均价走势如下图所示,为抑制房价过快上涨,政府从8月份开始采取宏观调控措施,10月份开始房价得到很好的抑制.

(1)地产数据研究院发现,3月至7月的各月均价(万元/平方米)与月份之间具有较强的线性相关关系,试建立关于的回归方程(系数精确到0.01);政府若不调控,依此相关关系预测第12月份该市新建住宅销售均价;

(2)地产数据研究院在2016年的12个月份中,随机抽取三个月的数据作样本分析,若关注所抽三个月的所属季度,记不同季度的个数为,求的分布列和数学期望.

参考数据及公式:

回归方程中斜率和截距的最小二乘法估计公式分别为:

.

查看答案和解析>>

同步练习册答案