【题目】多面体
,
,
,
,
,
,
,
在平面
上的射影
是线段
的中点.
![]()
(1)求证:
平面
;
(2)若
,求二面角
的余弦值.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左焦点为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)圆
是以椭圆
的焦距为直径的圆,点
是椭圆
的右顶点,过点
的直线
与圆
相交于
,
两点,过点
的直线
与椭圆
相交于另一点
,若
,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下说法:
①三条直线两两相交,则他们一定共面.
②存在两两相交的三个平面可以把空间分成9部分.
③如图是正方体的平面展开图,则在这个正方体中,一定有
平面
且平面
平面
.
④四面体
所有的棱长都相等,则它的外接球表面积与内切球表面积之比是9.
其中正确的是______
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把一个均匀的正方体骰子抛掷两次,观察出现的点数,记第一次出现的点数为
,第二次出现的点数为
,设直线
:
,直线
:
.
(1)求直线
和直线
没有交点的概率;
(2)求直线
和直线
的交点在第一象限的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的对称轴为坐标轴,焦点在
轴上,离心率为
,且经过点
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
相交于
、
两点,且
,
,若原点
在以
为直径的圆外,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(Ⅰ)令![]()
①当
时,求函数
在点
处的切线方程;
②若
时,
恒成立,求
的所有取值集合与
的关系;
(Ⅱ)记
,是否存在
,使得对任意的实数
,函数
在
上有且仅有两个零点?若存在,求出满足条件的最小正整数
,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com