精英家教网 > 高中数学 > 题目详情
10.奇函数f(x)满足件f(x+2)+f(x)=0,(x∈R),若x∈[0,1]时,f(x)=2x-1,则f(log${\;}_{\frac{1}{8}}$125)=-$\frac{1}{4}$.

分析 根据函数奇偶性和条件判断函数的周期性,利用函数奇偶性和周期性的性质将条件进行转化求解即可.

解答 解:∵f(x)是奇函数,
∴f(-x)=-f(x),f(0)=0,
又∵f(x+2)+f(x)=0,
∴f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
即函数f(x)是周期为4的周期函数,
log${\;}_{\frac{1}{8}}$125=$\frac{lo{g}_{2}{5}^{3}}{lo{g}_{2}\frac{1}{8}}$=$\frac{3lo{g}_{2}5}{-3}$=-log25,
则f(log${\;}_{\frac{1}{8}}$125)=f(-log25)=-f(log25),
∵2<log25<3,
∴0<log25-2<1,
即0<log2$\frac{5}{4}$<1,
则f(log2$\frac{5}{4}$)=${2}^{lo{g}_{2}\frac{5}{4}}$-1=$\frac{5}{4}$-1=$\frac{1}{4}$,
即f(log${\;}_{\frac{1}{8}}$125)=f(-log25)=-f(log25)=-$\frac{1}{4}$,
 故答案为:-$\frac{1}{4}$.

点评 本题考查函数值的计算,考查函数的奇偶性和周期性的应用以及利用周期性求函数值,体现转化的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在三棱锥P-ABC中,侧面PAC⊥底面ABC,△PAC为正三角形,∠ACB=90°,AC=6,BC=4,则此三棱锥外接球的表面积是64π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在平行四边形ABCD中,已知AB=CD=a,AD=2a,∠DAB=60°,AC∩BD=E,将其沿对角线BD折成直二面角.
(1)证明:AB⊥平面BCD;
(2)证明:平面ACD⊥平面ABD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)设f(x)的定义域为R的函数,求证:F(x)=$\frac{1}{2}$[f(x)+f(-x)]是偶函数;G(x)=$\frac{1}{2}$[f(x)-f(-x)]是奇函数.
(2)利用上述结论,你能把函数f(x)=3x3+2x2-x+3表示成一个偶函数与一个奇函数之和的形式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知四点A(-1,-5),B(0,-3),C(3,3),D(5,7),试用向量方法判断A、B、C、D四点是否共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知不等式loga(1-$\frac{1}{x+2}$)>0的解集是(-∞,-2),则a的取值范围是(  )
A.0<a$<\frac{1}{2}$B.$\frac{1}{2}$<a<1C.a>2D.a>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=2sin(2x+φ),φ∈(0,$\frac{π}{2}$)对任意x有f(x)≤|f($\frac{π}{6}$)|
(1)求f(x)图象对称轴方程和对称中心.
(2)当x∈[0,$\frac{π}{2}$]时,求f(x)单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知空间向量$\overrightarrow{AB}$,$\overrightarrow{BC}$,$\overrightarrow{CD}$,$\overrightarrow{AD}$,则下列结论正确的是(  )
A.$\overrightarrow{AB}$=$\overrightarrow{BC}$+$\overrightarrow{CD}$B.$\overrightarrow{AB}$-$\overrightarrow{DC}$+$\overrightarrow{BC}$=$\overrightarrow{AD}$C.$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{DC}$D.$\overrightarrow{BC}$=$\overrightarrow{BD}$-$\overrightarrow{DC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.数列{an}中,已知a1=$\frac{1}{4}$,an+1=$\sqrt{{a}_{n}-{{a}_{n}}^{2}}$.
(1)证明:an<an+1<$\frac{1}{2}$;
(2)证明:当n≥2时,($\frac{{a}_{n+1}}{{a}_{n}}$)${\;}^{{2}^{n}}$<2.

查看答案和解析>>

同步练习册答案