精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的半焦距为左焦点为,右顶点为,抛物线与椭圆交于两点,若四边形是菱形,则椭圆的离心率是(  )

A. B. C. D.

【答案】D

【解析】

椭圆的左焦点为,右顶点为抛物线与椭圆交于两点,两点关于轴对称,可设四边形是菱形,,将代入抛物线方程,得,再代入椭圆方程,得,化简整理,得,解之得不合题意,舍去),故答案为.

方法点睛】本题主要考查抛物线的方程及椭圆的几何性质与离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.本题中,根据点在椭圆上可以建立关于焦半径和焦距的关系.从而找出之间的关系,求出离心率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平面上的三点 .

(1)求以 为焦点且过点 的椭圆的标准方程

(2)设点 关于直线 的对称点分别为 求以 为焦点且过点 的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)选修4﹣2:矩阵与变换
设曲线2x2+2xy+y2=1在矩阵A= (a>0)对应的变换作用下得到的曲线为x2+y2=1.
(Ⅰ)求实数a,b的值.
(Ⅱ)求A2的逆矩阵.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的图象在点处的切线与直线平行.

(1)求的值;

(2)若函数,且在区间上是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.

(1)求证:BF⊥平面ACFD;
(2)求直线BD与平面ACFD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,
(1)证明:A1C⊥平面BB1D1D;

(2)求平面OCB1与平面BB1D1D的夹角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中是自然对数的底数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)令,讨论的单调性并判断有无极值,有极值时求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则不等式f(x)≥x2的解集是(
A.[﹣1,1]
B.[﹣2,2]
C.[﹣2,1]
D.[﹣1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式的解集为(1,t),记函数.

(1)求证:函数y=f(x)必有两个不同的零点;

(2)若函数y=f(x)的两个零点分别为,试将表示成以为自变量的函数,并求的取值范围;

查看答案和解析>>

同步练习册答案