精英家教网 > 高中数学 > 题目详情

如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)

 

 

DM⊥PC(答案不唯一)

【解析】由定理可知,BD⊥PC.

∴当DM⊥PC时,即有PC⊥平面MBD,而PC?平面PCD,

∴平面MBD⊥平面PCD.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-3圆的方程(解析版) 题型:填空题

已知x,y满足x2+y2=1,则的最小值为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-7立体几何中的向量方法(解析版) 题型:选择题

如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1-DC-C1的大小为60°,则AD的长为(  )

A. B. C.2 D.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-6空间向量及运算(解析版) 题型:解答题

如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算:

(1)·

(2)·

(3)EG的长;

(4)异面直线AG与CE所成角的余弦值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-6空间向量及运算(解析版) 题型:选择题

△ABC的顶点分别为A(1,-1,2),B(5,-6,2),C(1,3,-1),则AC边上的高BD等于(  )

A.5 B. C.4 D.2

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:填空题

设α、β、γ为彼此不重合的三个平面,l为直线,给出下列命题:

①若α∥β,α⊥γ,则β⊥γ;

②若α⊥γ,β⊥γ,且α∩β=l,则l⊥γ;

③若直线l与平面α内的无数条直线垂直,则直线l与平面α垂直;

④若α内存在不共线的三点到β的距离相等,则平面α平行于平面β;

上面命题中,真命题的序号为________(写出所有真命题的序号).

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:选择题

已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的(  )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-3空间点直线平面之间的位置关系(解析版) 题型:选择题

如图是正方体的展开图,则在这个正方体中:

①BM与ED平行;

②CN与BE是异面直线;

③CN与BM成60°角;

④DM与BN垂直.

以上四个命题中,正确命题的序号是(  )

A.①②③ B.②④ C.③④ D.②③④

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-6直接证明与间接证明(解析版) 题型:解答题

已知二次函数f(x)=ax2+bx+c的图象与x轴有两个不同的交点,若f(c)=0且0<x<c时,f(x)>0,

(1)证明:是f(x)=0的一个根;

(2)试比较与c的大小;

(3)证明:-2<b<-1.

 

查看答案和解析>>

同步练习册答案